scholarly journals New Approach in Fixed Resource Allocation and Target Setting Using Data Envelopment Analysis with Common Set of Weights

Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Marzieh Ghasemi ◽  
Mohammad Reza Mozaffari ◽  
Farhad Hosseinzadeh Lotfi ◽  
Mohsen Rostamy malkhalifeh ◽  
Mohammad Hasan Behzadi

One of the mathematical programming techniques is data envelopment analysis (DEA), which is used for evaluating the efficiency of a set of similar decision-making units (DMUs). Fixed resource allocation and target setting with the help of DEA is a subject that has gained much attention from researchers. A new model was proposed by determining a common set of weights (CSW). All DMUs were involved with the aim of achieving higher efficiency in every DMU after the procedure. The minimum resources and targets allocated to each DMU were commensurate to the efficiency of that DMU and the share of DMU in the input resources and the output productions. To examine the proposed method, other methods in the DEA literature were examined as well, and then, the efficiency of the method was demonstrated through a numerical example.

2018 ◽  
Vol 35 (06) ◽  
pp. 1850039 ◽  
Author(s):  
Lei Chen ◽  
Fei-Mei Wu ◽  
Feng Feng ◽  
Fujun Lai ◽  
Ying-Ming Wang

Major drawbacks of the traditional data envelopment analysis (DEA) method include selecting optimal weights in a flexible manner, lacking adequate discrimination power for efficient decision-making units, and considering only desirable outputs. By introducing the concept of global efficiency optimization, this study proposed a double frontiers DEA approach with undesirable outputs to generate a common set of weights for evaluating all decision-making units from both the optimistic and pessimistic perspectives. For a unique optimal solution, compromise models for individual efficiency optimization were developed as a secondary goal. Finally, as an illustration, the models were applied to evaluate the energy efficiency of the Chinese regional economy. The results showed that the proposed approach could improve discrimination power and obtain a fair result in a case where both desirable and undesirable outputs exist.


2021 ◽  
Vol 40 (1) ◽  
pp. 813-832
Author(s):  
Sajad Kazemi ◽  
Reza Kiani Mavi ◽  
Ali Emrouznejad ◽  
Neda Kiani Mavi

Data Envelopment Analysis (DEA) is the most popular mathematical approach to assess efficiency of decision-making units (DMUs). In complex organizations, DMUs face a heterogeneous condition regarding environmental factors which affect their efficiencies. When there are a large number of objects, non-homogeneity of DMUs significantly influences their efficiency scores that leads to unfair ranking of DMUs. The aim of this study is to deal with non-homogeneous DMUs by implementing a clustering technique for further efficiency analysis. This paper proposes a common set of weights (CSW) model with ideal point method to develop an identical weight vector for all DMUs. This study proposes a framework to measuring efficiency of complex organizations, such as banks, that have several operational styles or various objectives. The proposed framework helps managers and decision makers (1) to identify environmental components influencing the efficiency of DMUs, (2) to use a fuzzy equivalence relation approach proposed here to cluster the DMUs to homogenized groups, (3) to produce a common set of weights (CSWs) for all DMUs with the model developed here that considers fuzzy data within each cluster, and finally (4) to calculate the efficiency score and overall ranking of DMUs within each cluster.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Hongjun Zhang ◽  
Youliang Zhang ◽  
Rui Zhang

Data envelopment analysis (DEA) is a powerful tool for evaluating and improving the performance of a set of decision-making units (DMUs). Empirically, there are usually many DMUs exhibiting “efficient” status in multi-input multioutput situations. However, it is not appropriate to assert that all efficient DMUs have equivalent performances. Actually, a DMU can be evaluated to be efficient as long as it performs best in a single dimension. This paper argues that an efficient DMU of a particular input-output proportion has its own specialty and may also perform poorly in some dimensions. Two DEA-based approaches are proposed to measure the dimension-specific efficiency of DMUs. One is measuring efficiency in multiplier-form by further processing the original multiplier DEA model. The other is calculating efficiency in envelopment-form by comparing with an ideal DMU. The proposed approaches are applied to 26 supermarkets in the city of Nanjing, China, which have provided new insights on efficiency for the managers.


Author(s):  
B. Vittal ◽  
Raju Nellutla ◽  
M. Krishna Reddy

In banking system the evaluation of productivity and performance is the key factor among the fundamental concepts in management. For identify the potential performance of a bank efficiency is the parameter to evaluate effective banking system. To measure the efficiency of a bank selection of appropriate input-output variables is one of the most vital issues. The suitable identification of input-output variables helps to create and identify model in order to evaluate the efficiency and analysis. The Data Envelopment Analysis (DEA) is a mathematical approach used to measure the efficiency of identified Decision Making Units (DMUs). The DEA is a methodology for evaluating the relative efficiency of peer decision making units of identified input/output variables for the financial year 2018-19. In this study the basic DEA CCR, BCC models used for measure the efficiency of DMUs. In addition to these models for minimize the input excess and output shortfall Slack Based Measure (SBM) efficiency used. The SBM is a scalar measure which directly deals with slacks of input, output variables which help in obtain improved efficiency score compare with previous model. The result from the analysis is


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Tiantan Yang ◽  
Pingchun Wang ◽  
Feng Li

This paper aims to develop a data envelopment analysis (DEA) based model for allocating input resources and deciding output targets in organizations with a centralized decision-making environment, for example, banks, police stations, and supermarket chains. The central decision-maker has an interest in maximizing the total output production and at the same time minimizing the total input consumption. Traditionally, all decision-making units (DMUs) can be easily projected to the efficient frontier, which is a mathematical feasibility; however, it does not guarantee the managerial feasibility during the planning period. In this paper, we will take potential limitations of input-output changes into account by building a difficulty coefficient matrix of modifying their production in the current production possibility set so that the solution guarantees managerial feasibilities. Three objectives, namely, maximizing aggregated outputs, minimizing the consumption of input resources, and minimizing the total difficulty coefficient, are proposed and incorporated into the formation of resource allocation and target setting scheme. Building on this, we combine DEA and multiobjective programming to solve the resource allocation and target setting problem. In the end, we apply our proposed approach to a real-world problem of sixteen chain hotels to illustrate the efficacy and usefulness of the proposed approach.


2015 ◽  
Vol 14 (06) ◽  
pp. 1189-1213 ◽  
Author(s):  
Adel Hatami-Marbini ◽  
Zahra Ghelej Beigi ◽  
Hirofumi Fukuyama ◽  
Kobra Gholami

Data Envelopment Analysis (DEA) is a nonparametric mathematical programming methodology for performance measurement of organizational units that can be utilized normatively and proactively in resource allocation and target setting. While previous studies along this line have commonly utilized exact (crisp) data, the prospective and proactive use of DEA in the activity planning frequently involves uncertainty or impreciseness as to the feasible ranges for resources to be allocated and output targets to be established. The current paper proposes an imprecise DEA-based linear programming method with interval inputs and outputs by addressing the gap of missing the imprecise data settings. For this aim, we present common set of weights models to obtain the interval efficiency of Decision-Making Units (DMUs) with interval inputs and outputs. We then propose DEA-based models to allocate imprecise resources and setting imprecise targets to DMUs such that the interval efficiency of all the DMUs improves or at least remains. The proposed model provides reasonable managerial objectives with respect to the efficiency of the subordinate units when the centralized planner implements resource allocation and target setting. We exemplify the applicability and efficacy of the proposed method using a numerical example in the frame of two distinct scenarios.


2019 ◽  
Vol 11 (7) ◽  
pp. 2059 ◽  
Author(s):  
Jiyoung Lee ◽  
Gyunghyun Choi

Ranking of efficient decision-making units (DMUs) using data envelopment analysis (DEA) results is very important for various purposes. We propose a new comprehensive ranking method using network analysis for efficient DMUs to improve the discriminating power of DEA. This ranking method uses a measure, namely dominance value, which is a network centrality-based indicator. Thus far, existing methods exploiting DMU’s positional features use either the superiority, which considers the efficient DMUs’ relative position on the frontier compared to other DMUs, or the influence, which captures the importance of the DMUs’ role as benchmarking targets for inefficient DMUs. However, in this research, the dominance value is the compounded measure of both core positional features of DMUs. Moreover, a network representation technique has been used to ensure the performance of the dominance value compared to the superiority and influence. To demonstrate the proposed ranking method, we present two examples, research and development (R&D) efficiency of small and medium-sized enterprises (SMEs) and technical efficiency of plug-in hybrid electric vehicles (HEVs). Through these two examples, we can see how the known weaknesses and the unobserved points in the existing method differ in this new method. Hence, it is expected that the proposed method provides another new meaningful ranking result that can show different implications.


Sign in / Sign up

Export Citation Format

Share Document