scholarly journals Realization of Super-Large-Diameter Slurry Shield Passing through Settlement-Sensitive Area Based on Unreinforced Disturbance Control Technology

2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Dongshuang Liu ◽  
Xinrong Liu ◽  
Zuliang Zhong ◽  
Yafeng Han ◽  
Fei Xiong ◽  
...  

Due to the complex construction conditions of shield tunnels, ground disturbance is inevitable during the construction process, which leads to surface settlement and, in serious cases, damage to surrounding buildings (structures). Therefore, it is especially important to effectively control the constructive settlement of subway tunnels when crossing settlement-sensitive areas such as high-density shantytowns. Based on the project of Wuhan Metro Line 8 Phase I, the shield of Huangpu Road Station-Xujiapang Road Station interval crossing high-density shantytowns, we study the disturbance control technology of oversized diameter mud and water shield crossing unreinforced settlement-sensitive areas during the construction process. By optimizing the excavation parameters and evaluating the ground buildings, the excavation process can be monitored at the same time, and the water pressure, speed, and tool torque required during the excavation during the construction process can be finely adjusted; the control of tunneling process parameters can provide reference and basis for analyzing the construction control of large-diameter shield through old shantytowns.

2021 ◽  
Author(s):  
Matias Alonso ◽  
Jean Vaunat ◽  
Minh-Ngoc Vu ◽  
Antonio Gens

<p>Argillaceous rocks have great potential as possible geological host medium to store radioactive waste.  Andra is leading the design of a deep geological nuclear waste repository to be located in the Callovo-Oxfordian formation. In the framework of this project, excavations of large diameter galleries are contemplated to access and to store intermediate-level long-lived nuclear waste at repository main level. The closure of the repository will be realized by building sealing structures of expansive material.</p><p>The response of such structures is affected by several thermo-hydro-mechanical coupled processes taking place in the near and far field of the argillaceous formations. They include the formation of an excavation induced damaged zone around the galleries, the impact of the thermal load on host rock pressures and deformations, the long-term interaction with support concrete structural elements and the hydration and swelling of sealing materials. As a result, the study of their performance requires to perform simulation works of increasing complexity in terms of coupling equations, problem geometry and material behaviour. As well, challenging computational aspects, as the ones related to fractures creation and propagation, have to be considered for a representative analysis of the problem.</p><p>This work presents advanced large scale THM numerical models to provide keys about the response of the host rock around large diameter galleries during excavation and further thermal load as well as to analyse the performance of large diameter sealing structures. Particular features of the models include on one hand advanced constitutive laws to capture the development of the fractured zone around excavations, the behaviour of host rock/gallery support interfaces and the multi-scale response of bentonitic backfill. On the other hand, simulations consider geometries including constructive details of interest at decimetre scale within large discretization domain covering the whole formation stratigraphic column.</p><p>These challenging simulations provided qualitative and quantitative results on key aspects for natural and engineered barrier integrity, like extension of the damaged zone, impact of the thermal load and water pressure variations in the surrounding geological layers, duration of natural hydration phase, swelling pressure development and seals global stability.</p>


2019 ◽  
Vol 59 (5) ◽  
pp. 435-447 ◽  
Author(s):  
Farhad Farhadi Ayoublou ◽  
Majid Taromi ◽  
Abbas Eftekhari

The construction of tunnel portals in mountainous or slope areas often involves problems, which are closely related to factors, such as slope topography, geology, geotechnics, construction geometry and the tunnel excavation method. The activation of landslides or the acceleration of these events is one of the main challenges faced in the construction of tunnel portals. In this paper, we address the instability problem in Sabzkuh tunnel portal that has been excavated with a complex geological profile and high seismicity in Iran’s High Zagros region. The complexity and intense heterogeneity in geological formations, land acquisition problems and the lack of appropriate monitoring programs led to the instability of the tunnel portal. The excavation process started without applying appropriate techniques for a ground stabilization. The use of inappropriate tunnel excavation methods for this unstable geological structure resulted in an activation of an old Solaghan fault and several collapses in the tunnel. Crossing the collapsed areas and reinforcing the tunnel portal took about 7 months and imposed heavy costs on the project. This case study deals with the importance of the choice of the site location, ground and underground monitoring, analysing and summarizing the collected data in order to prepare a geological model before and during the construction process.


Sign in / Sign up

Export Citation Format

Share Document