Jacobi-weighted orthogonal polynomials on triangular domains
2005 ◽
Vol 2005
(3)
◽
pp. 205-217
◽
Keyword(s):
We construct Jacobi-weighted orthogonal polynomials𝒫n,r(α,β,γ)(u,v,w),α,β,γ>−1,α+β+γ=0, on the triangular domainT. We show that these polynomials𝒫n,r(α,β,γ)(u,v,w)over the triangular domainTsatisfy the following properties:𝒫n,r(α,β,γ)(u,v,w)∈ℒn,n≥1,r=0,1,…,n,and𝒫n,r(α,β,γ)(u,v,w)⊥𝒫n,s(α,β,γ)(u,v,w)forr≠s. And hence,𝒫n,r(α,β,γ)(u,v,w),n=0,1,2,…,r=0,1,…,nform an orthogonal system over the triangular domainTwith respect to the Jacobi weight function. These Jacobi-weighted orthogonal polynomials on triangular domains are given in Bernstein basis form and thus preserve many properties of the Bernstein polynomial basis.
2004 ◽
Vol 4
(2)
◽
pp. 206-214
◽
2003 ◽
Vol 3
(4)
◽
pp. 608-622
◽
2012 ◽
Vol 22
(1)
◽
pp. 39-48
◽
2012 ◽
Vol 29
(6)
◽
pp. 379-419
◽
2002 ◽
Vol 16
(14n15)
◽
pp. 2129-2136
◽