scholarly journals Superconvergence of finite element method for parabolic problem

2000 ◽  
Vol 23 (8) ◽  
pp. 567-578 ◽  
Author(s):  
Do Y. Kwak ◽  
Sungyun Lee ◽  
Qian Li

We study superconvergence of a semi-discrete finite element scheme for parabolic problem. Our new scheme is based on introducing different approximation of initial condition. First, we give a superconvergence ofuh−Rhu, then use a postprocessing to improve the accuracy to higher order.

Author(s):  
Dmitriy Antipin ◽  
Mihail Bulychev ◽  
Gennadiy Petrov

A simplified method has been developed for assessing the loading of the load-bearing systems of passenger cars under thermal loading with a fire spot with limited properties. A system of simplifications for realizing a combustion spot is substantiated. A method for its implementation is proposed. The description of the object of research is given with the necessary thoroughness of presentation. A finite element scheme has been developed and adapted, taking into account the application of thermal loads in the system of an industrial software complex that implements the finite element method. Verification of the finite element scheme was carried out taking into account full-scale normative experiments. A conclusion is made about the possibility of the applicability of the finite element scheme for the study. Numerical experiments have been carried out to assess the carrying capacity of the body of a double-deck passenger car when it is exposed to a combustion center with known thermal parameters. The experiments were built and performed in a finite element method system. The results of simulations in the affected zone of the alleged fire were obtained for the conditional spot of its location. Comparison of the results with the static loading mode of the car body is considered. The analysis of the results obtained is carried out. A conclusion is given on the effect of a small localization fire on the carrying capacity of the car body. The proposed method is evaluated taking into account the possibility of further use


2015 ◽  
Vol 53 (1-2) ◽  
pp. 413-443 ◽  
Author(s):  
Vimal Srivastava ◽  
Sudhakar Chaudhary ◽  
V. V. K. Srinivas Kumar ◽  
Balaji Srinivasan

Author(s):  
Dong T.P. Nguyen ◽  
Dirk Nuyens

We introduce the \emph{multivariate decomposition finite element method} (MDFEM) for elliptic PDEs with lognormal diffusion coefficients, that is, when the diffusion coefficient has the form $a=\exp(Z)$ where $Z$ is a Gaussian random field defined by an infinite series expansion $Z(\bsy) = \sum_{j \ge 1} y_j \, \phi_j$ with $y_j \sim \calN(0,1)$ and a given sequence of functions $\{\phi_j\}_{j \ge 1}$. We use the MDFEM to approximate the expected value of a linear functional of the solution of the PDE which is an infinite-dimensional integral over the parameter space. The proposed algorithm uses the \emph{multivariate decomposition method} (MDM) to compute the infinite-dimensional integral by a decomposition into finite-dimensional integrals, which we resolve using \emph{quasi-Monte Carlo} (QMC) methods, and for which we use the \emph{finite element method} (FEM) to solve different instances of the PDE.   We develop higher-order quasi-Monte Carlo rules for integration over the finite-di\-men\-si\-onal Euclidean space with respect to the Gaussian distribution by use of a truncation strategy. By linear transformations of interlaced polynomial lattice rules from the unit cube to a multivariate box of the Euclidean space we achieve higher-order convergence rates for functions belonging to a class of \emph{anchored Gaussian Sobolev spaces} while taking into account the truncation error. These cubature rules are then used in the MDFEM algorithm.   Under appropriate conditions, the MDFEM achieves higher-order convergence rates in term of error versus cost, i.e., to achieve an accuracy of $O(\epsilon)$ the computational cost is $O(\epsilon^{-1/\lambda-\dd/\lambda}) = O(\epsilon^{-(p^* + \dd/\tau)/(1-p^*)})$ where $\epsilon^{-1/\lambda}$ and $\epsilon^{-\dd/\lambda}$ are respectively the cost of the quasi-Monte Carlo cubature and the finite element approximations, with $\dd = d \, (1+\ddelta)$ for some $\ddelta \ge 0$ and $d$ the physical dimension, and $0 < p^* \le (2 + \dd/\tau)^{-1}$ is a parameter representing the sparsity of $\{\phi_j\}_{j \ge 1}$.


2014 ◽  
Vol 668-669 ◽  
pp. 1130-1133
Author(s):  
Lei Hou ◽  
Xian Yan Sun ◽  
Lin Qiu

In this paper, we employ semi-discrete finite element method to study the convergence of the Cauchy equation. The convergent order can reach. In numerical results, the space domain is discrete by Lagrange interpolation function with 9-point biquadrate element. The time domain is discrete by two difference schemes: Euler and Crank-Nicolson scheme. Numerical results show that the convergence of Crank-Nicolson scheme is better than that of Euler scheme.


Sign in / Sign up

Export Citation Format

Share Document