scholarly journals A note on computing the generalized inverseA T,S (2)of a matrixA

2002 ◽  
Vol 31 (8) ◽  
pp. 497-507 ◽  
Author(s):  
Xiezhang Li ◽  
Yimin Wei

The generalized inverseA T,S (2)of a matrixAis a{2}-inverse ofAwith the prescribed rangeTand null spaceS. A representation for the generalized inverseA T,S (2)has been recently developed with the conditionσ (GA| T)⊂(0,∞), whereGis a matrix withR(G)=TandN(G)=S. In this note, we remove the above condition. Three types of iterative methods forA T,S (2)are presented ifσ(GA|T)is a subset of the open right half-plane and they are extensions of existing computational procedures ofA T,S (2), including special cases such as the weighted Moore-Penrose inverseA M,N †and the Drazin inverseAD. Numerical examples are given to illustrate our results.

2019 ◽  
Vol 28 (1) ◽  
pp. 19-26
Author(s):  
IOANNIS K. ARGYROS ◽  
◽  
SANTHOSH GEORGE ◽  

We present the local as well as the semi-local convergence of some iterative methods free of derivatives for Banach space valued operators. These methods contain the secant and the Kurchatov method as special cases. The convergence is based on weak hypotheses specializing to Lipschitz continuous or Holder continuous hypotheses. The results are of theoretical and practical interest. In particular the method is compared favorably ¨ to other methods using concrete numerical examples to solve systems of equations containing a nondifferentiable term.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1441-1452
Author(s):  
Mehdi Dehghana ◽  
Marzieh Dehghani-Madisehb ◽  
Masoud Hajarianc

Solving linear systems is a classical problem of engineering and numerical analysis which has various applications in many sciences and engineering. In this paper, we study efficient iterative methods, based on the diagonal and off-diagonal splitting of the coefficient matrix A for solving linear system Ax = b, where A ? Cnxn is nonsingular and x,b ? Cnxm. The new method is a two-parameter two-step method that has some iterative methods as its special cases. Numerical examples are presented to illustrate the effectiveness of the new method.


Algorithms ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 303
Author(s):  
Min-Young Lee ◽  
Young Ik Kim

We develop a family of three-step sixth order methods with generic weight functions employed in the second and third sub-steps for solving nonlinear systems. Theoretical and computational studies are of major concern for the convergence behavior with applications to special cases of rational weight functions. A number of numerical examples are illustrated to confirm the convergence behavior of local as well as global character of the proposed and existing methods viewed through the basins of attraction.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Xiaowei Liu ◽  
Lingen Chen ◽  
Yanlin Ge ◽  
Huijun Feng ◽  
Feng Wu ◽  
...  

AbstractBased on an irreversible quantum Carnot heat pump model in which spin-1/2 systems are used as working substance, an exergy-based ecological function and some other important parameters of the model heat pump are derived. Numerical examples are provided to investigate its ecological performance characteristics. The influences of various irreversibility factors on the ecological performance are discussed. Performance comparison and discussion among maximum points of ecological function, heating load, and so on, are conducted. At last, three special cases are discussed.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1855 ◽  
Author(s):  
Petko D. Proinov ◽  
Maria T. Vasileva

One of the famous third-order iterative methods for finding simultaneously all the zeros of a polynomial was introduced by Ehrlich in 1967. In this paper, we construct a new family of high-order iterative methods as a combination of Ehrlich’s iteration function and an arbitrary iteration function. We call these methods Ehrlich’s methods with correction. The paper provides a detailed local convergence analysis of presented iterative methods for a large class of iteration functions. As a consequence, we obtain two types of local convergence theorems as well as semilocal convergence theorems (with computer verifiable initial condition). As special cases of the main results, we study the convergence of several particular iterative methods. The paper ends with some experiments that show the applicability of our semilocal convergence theorems.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Khanitin Muangchoo-in ◽  
Kanokwan Sitthithakerngkiet ◽  
Parinya Sa-Ngiamsunthorn ◽  
Poom Kumam

AbstractIn this paper, the authors present a strategy based on fixed point iterative methods to solve a nonlinear dynamical problem in a form of Green’s function with boundary value problems. First, the authors construct the sequence named Green’s normal-S iteration to show that the sequence converges strongly to a fixed point, this sequence was constructed based on the kinetics of the amperometric enzyme problem. Finally, the authors show numerical examples to analyze the solution of that problem.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850016 ◽  
Author(s):  
A. A. Hemeda

In this work, a simple new iterative technique based on the integral operator, the inverse of the differential operator in the problem under consideration, is introduced to solve nonlinear integro-differential and systems of nonlinear integro-differential equations (IDEs). The introduced technique is simpler and shorter in its computational procedures and time than the other methods. In addition, it does not require discretization, linearization or any restrictive assumption of any form in providing analytical or approximate solution to linear and nonlinear equations. Also, this technique does not require calculating Adomian’s polynomials, Lagrange’s multiplier values or equating the terms of equal powers of the impeding parameter which need more computational procedures and time. These advantages make it reliable and its efficiency is demonstrated with numerical examples.


2021 ◽  
Vol 47 (1) ◽  
Author(s):  
Kevin Schober ◽  
Jürgen Prestin ◽  
Serhii A. Stasyuk

AbstractIn this paper, we show that certain trigonometric polynomial shearlets which are special cases of directional de la Vallée Poussin-type wavelets are able to detect step discontinuities along boundary curves of periodic characteristic functions. Motivated by recent results for discrete shearlets in two dimensions, we provide lower and upper estimates for the magnitude of the corresponding inner products. In the proof, we use localization properties of trigonometric polynomial shearlets in the time and frequency domain and, among other things, bounds for certain Fresnel integrals. Moreover, we give numerical examples which underline the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-16
Author(s):  
Renbin Liu ◽  
Yong Wu

Based on the renewal process theory we develop a decomposition method to analyze the reliability of the repair facility in ann-unit series system with vacations. Using this approach, we study the unavailability and the mean replacement number during(0,t]of the repair facility. The method proposed in this work is novel and concise, which can make us see clearly the structures of the facility indices of a series system with an unreliable repair facility, two convolution relations. Special cases and numerical examples are given to show the validity of our method.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Qianglian Huang ◽  
Lanping Zhu ◽  
Xiaoru Chen ◽  
Chang Zhang

We investigate the stable perturbation of the generalized Drazin inverses of closed linear operators in Banach spaces and obtain some new characterizations for the generalized Drazin inverses to have prescribed range and null space. As special cases of our results, we recover the perturbation theorems of Wei and Wang, Castro and Koliha, Rakocevic and Wei, Castro and Koliha and Wei.


Sign in / Sign up

Export Citation Format

Share Document