scholarly journals Isomorphisms of semigroups of transformations

1983 ◽  
Vol 6 (3) ◽  
pp. 487-501
Author(s):  
A. Sita Rama Murti

IfMis a centered operand over a semigroupS, the suboperands ofMcontaining zero are characterized in terms ofS-homomorphisms ofM. Some properties of centered operands over a semigroup with zero are studied.AΔ-centralizerCof a setMand the semigroupS(C,Δ)of transformations ofMoverCare introduced, whereΔis a subset ofM. WhenΔ=M,Mis a faithful and irreducible centered operand overS(C,Δ). Theorems concerning the isomorphisms of semigroups of transformations of setsMioverΔi-centralizersCi,i=1,2are obtained, and the following theorem in ring theory is deduced: LetLi,i=1,2be the rings of linear transformations of vector spaces(Mi,Di)not necessarily finite dimensional. Thenfis an isomorphism ofL1→L2if and only if there exists a1−1semilinear transformationhofM1ontoM2such thatfT=hTh−1for allT∈L1.

1976 ◽  
Vol 28 (4) ◽  
pp. 889-896
Author(s):  
Frank Zorzitto

Consider a system of N linear transformations A1, … , AN: V → W, where F and IF are complex vector spaces. Denote it for short by (F, W). A pair of subspaces X ⊂ V, Y ⊂ W such that determines a subsystem (X, Y) and a quotient system (V/X, W/Y) (with the induced transformations). The subsystem (X, Y) is of finite codimension in (V, W) if and only if V/X and W / Y are finite-dimensional. It is a direct summand of (V, W) in case there exist supplementary subspaces P of X in F and Q of F in IF such that (P, Q) is a subsystem.


2019 ◽  
Vol 12 (02) ◽  
pp. 1950031
Author(s):  
Geena Joy ◽  
K. V. Thomas

This paper introduces the concept of lattice vector space and establishes many important results. Also, this paper deals with linear transformations on lattice vector spaces and discusses their elementary properties. We prove that every finite dimensional lattice vector space is isomorphic to [Formula: see text] and show that the set of all columns (or the set of all rows) of an invertible matrix over [Formula: see text] is a basis for [Formula: see text].


1985 ◽  
Vol 100 (1-2) ◽  
pp. 123-138 ◽  
Author(s):  
M. A. Reynolds ◽  
R. P. Sullivan

SynopsisIn 1966, J. M. Howie characterised the transformations of an arbitrary set that can be written as a product (under composition) of idempotent transformations of the same set. In 1967, J. A. Erdos considered the analogous problem for linear transformations of a finite-dimensional vector space and in 1983, R. J. Dawlings investigated the corresponding idea for bounded operators on a separable Hilbert space. In this paper we study the case of arbitrary vector spaces.


1967 ◽  
Vol 8 (2) ◽  
pp. 118-122 ◽  
Author(s):  
J. A. Erdos

In [1], J. M. Howie considered the semigroup of transformations of sets and proved (Theorem 1) that every transformation of a finite set which is not a permutation can be written as a product of idempotents. In view of the analogy between the theories of transformations of finite sets and linear transformations of finite dimensional vector spaces, Howie's theorem suggests a corresponding result for matrices. The purpose of this note is to prove such a result.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


Filomat ◽  
2017 ◽  
Vol 31 (16) ◽  
pp. 5111-5116
Author(s):  
Davood Ayaseha

We study the locally convex cones which have finite dimension. We introduce the Euclidean convex quasiuniform structure on a finite dimensional cone. In special case of finite dimensional locally convex topological vector spaces, the symmetric topology induced by the Euclidean convex quasiuniform structure reduces to the known concept of Euclidean topology. We prove that the dual of a finite dimensional cone endowed with the Euclidean convex quasiuniform structure is identical with it?s algebraic dual.


2020 ◽  
pp. 1-14
Author(s):  
NICOLÁS ANDRUSKIEWITSCH ◽  
DIRCEU BAGIO ◽  
SARADIA DELLA FLORA ◽  
DAIANA FLÔRES

Abstract We present new examples of finite-dimensional Nichols algebras over fields of characteristic 2 from braided vector spaces that are not of diagonal type, admit realizations as Yetter–Drinfeld modules over finite abelian groups, and are analogous to Nichols algebras of finite Gelfand–Kirillov dimension in characteristic 0. New finite-dimensional pointed Hopf algebras over fields of characteristic 2 are obtained by bosonization with group algebras of suitable finite abelian groups.


Author(s):  
W. T. Gowers ◽  
L. Milićević

Abstract Let $G_1, \ldots , G_k$ be finite-dimensional vector spaces over a prime field $\mathbb {F}_p$ . A multilinear variety of codimension at most $d$ is a subset of $G_1 \times \cdots \times G_k$ defined as the zero set of $d$ forms, each of which is multilinear on some subset of the coordinates. A map $\phi$ defined on a multilinear variety $B$ is multilinear if for each coordinate $c$ and all choices of $x_i \in G_i$ , $i\not =c$ , the restriction map $y \mapsto \phi (x_1, \ldots , x_{c-1}, y, x_{c+1}, \ldots , x_k)$ is linear where defined. In this note, we show that a multilinear map defined on a multilinear variety of codimension at most $d$ coincides on a multilinear variety of codimension $O_{k}(d^{O_{k}(1)})$ with a multilinear map defined on the whole of $G_1\times \cdots \times G_k$ . Additionally, in the case of general finite fields, we deduce similar (but slightly weaker) results.


1999 ◽  
Vol 19 (3) ◽  
pp. 559-569
Author(s):  
D. BENARDETE ◽  
S. G. DANI

Given a Lie group $G$ and a lattice $\Gamma$ in $G$, a one-parameter subgroup $\phi$ of $G$ is said to be rigid if for any other one-parameter subgroup $\psi$, the flows induced by $\phi$ and $\psi$ on $\Gamma\backslash G$ (by right translations) are topologically orbit-equivalent only if they are affinely orbit-equivalent. It was previously known that if $G$ is a simply connected solvable Lie group such that all the eigenvalues of $\mathrm{Ad} (g) $, $g\in G$, are real, then all one-parameter subgroups of $G$ are rigid for any lattice in $G$. Here we consider a complementary case, in which the eigenvalues of $\mathrm{Ad} (g)$, $g\in G$, form the unit circle of complex numbers.Let $G$ be the semidirect product $N \rtimes M$, where $M$ and $N$ are finite-dimensional real vector spaces and where the action of $M$ on the normal subgroup $N$ is such that the center of $G$ is a lattice in $M$. We prove that there is a generic class of abelian lattices $\Gamma$ in $G$ such that any semisimple one-parameter subgroup $\phi$ (namely $\phi$ such that $\mathrm{Ad} (\phi_t)$ is diagonalizable over the complex numbers for all $t$) is rigid for $\Gamma$ (see Theorem 1.4). We also show that, on the other hand, there are fairly high-dimensional spaces of abelian lattices for which some semisimple $\phi$ are not rigid (see Corollary 4.3); further, there are non-rigid semisimple $\phi$ for which the induced flow is ergodic.


Sign in / Sign up

Export Citation Format

Share Document