scholarly journals A note on a paper by S. Haber

1983 ◽  
Vol 6 (3) ◽  
pp. 609-611 ◽  
Author(s):  
A. McD. Mercer

A technique used by S. Haber to prove an elementary inequality is applied here to obtain a more general inequality for convex sequences.

2021 ◽  
Vol 50 (3) ◽  
pp. 944-1005
Author(s):  
Guillermina Jasso

Inequality often appears in linked pairs of variables. Examples include schooling and income, income and consumption, and wealth and happiness. Consider the famous words of Veblen: “wealth confers honor.” Understanding inequality requires understanding input inequality, outcome inequality, and the relation between the two—in both inequality between persons and inequality between subgroups. This article contributes to the methodological toolkit for studying inequality by developing a framework that makes explicit both input inequality and outcome inequality and by addressing three main associated questions: (1) How do the mechanisms for generating and altering inequality differ across inputs and outcomes? (2) Which have more inequality—inputs or outcomes? (3) Under what conditions, and by what mechanisms, does input inequality affect outcome inequality? Results include the following: First, under specified conditions, distinctive mechanisms govern inequality in inputs and inequality in outcomes. Second, input inequality and outcome inequality can be the same or different; if different, whether inequality is greater among inputs or outcomes depends on the configuration of outcome function, types of inputs, distributional form of and inequality in cardinal inputs, and number of and associations among inputs. Third, the link between input inequality and outcome inequality is multiform; it can be nonexistent, linear, or nonlinear, and if nonlinear, it can be concave or convex. More deeply, this work signals the formidable empirical challenges in studying inequality, but also the fast growing toolbox. For example, even if the outcome distribution is difficult to derive, fundamental theorems on the variance make it possible to analyze the input–outcome inequality connection. Similarly, within specified distributions, the general inequality parameter makes it possible to express results in terms of both measures of overall inequality and measures of subgroup inequality.


2002 ◽  
Vol 33 (1) ◽  
pp. 83-92
Author(s):  
J. J. Koliha ◽  
J. Pecaric

This paper presents a class of very general weighted Opial type inequalities. The notivation comes from the monograph of Agarwal and Pang (Opial Inequalities with Applications in Differential and Difference Equations, Kluwer Acad., Dordrecht 1995) and the work of Anastassiou and Pecaric (J. Math. Anal. Appl. 239 (1999), 402-418).  Assuming only a very general inequality, we extend the latter paper in several directions.  A new result generalizing the original Opial's inequality is obtained, and applications to fractional derivatives are given.


1979 ◽  
Vol 2 (3) ◽  
pp. 531-535 ◽  
Author(s):  
Seymour Haber

An elementary inequality is proved in this note.


2019 ◽  
Author(s):  
Monia Fouad Naghi ◽  
Siraj Uddin ◽  
Mića S. Stanković

1999 ◽  
Vol 121 (3) ◽  
pp. 337-345 ◽  
Author(s):  
B. J. Driessen ◽  
N. Sadegh ◽  
G. G. Parker ◽  
G. R. Eisler

This work has developed a new robust and reliable O(N) algorithm for solving general inequality/equality constrained minimum-time problems. To our knowledge, no one has ever applied an O(N) algorithm for solving such minimum time problems. Moreover, the algorithm developed here is new and unique and does not suffer the inevitable ill-conditioning problems that pre-existing O(N) methods for inequality-constrained problems do. Herein we demonstrate the new algorithm by solving several cases of a tip path constrained three-link redundant robotic arm problem with torque bounds and joint angle bounds. Results are consistent with Pontryagin’s Maximum Principle. We include a speed/robustness/complexity comparison with a sequential quadratic programming (SQP) code. Here, the O(N) complexity and the significant speed, robustness, and complexity improvements over an SQP code are demonstrated. These numerical results are complemented with a rigorous theoretical convergence proof of the new O(N) algorithm.


2020 ◽  
Vol 25 (4) ◽  
pp. 80
Author(s):  
Fernanda Beltrán ◽  
Oliver Cuate ◽  
Oliver Schütze

Problems where several incommensurable objectives have to be optimized concurrently arise in many engineering and financial applications. Continuation methods for the treatment of such multi-objective optimization methods (MOPs) are very efficient if all objectives are continuous since in that case one can expect that the solution set forms at least locally a manifold. Recently, the Pareto Tracer (PT) has been proposed, which is such a multi-objective continuation method. While the method works reliably for MOPs with box and equality constraints, no strategy has been proposed yet to adequately treat general inequalities, which we address in this work. We formulate the extension of the PT and present numerical results on some selected benchmark problems. The results indicate that the new method can indeed handle general MOPs, which greatly enhances its applicability.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Siraj Uddin ◽  
Ion Mihai ◽  
Adela Mihai

Chen (2001) initiated the study of CR-warped product submanifolds in Kaehler manifolds and established a general inequality between an intrinsic invariant (the warping function) and an extrinsic invariant (second fundamental form).In this paper, we establish a relationship for the squared norm of the second fundamental form (an extrinsic invariant) of warped product bi-slant submanifolds of Kenmotsu manifolds in terms of the warping function (an intrinsic invariant) and bi-slant angles. The equality case is also considered. Some applications of derived inequality are given.


Sign in / Sign up

Export Citation Format

Share Document