scholarly journals Onθ-regular spaces

1994 ◽  
Vol 17 (4) ◽  
pp. 687-692 ◽  
Author(s):  
Martin M. Kovár

In this paper we studyθ-regularity and its relations to other topological properties. We show that the concepts ofθ-regularity (Janković, 1985) and point paracompactness (Boyte, 1973) coincide. Regular, strongly locally compact or paracompact spaces areθ-regular. We discuss the problem when a (countably)θ-regular space is regular, strongly locally compact, compact, or paracompact. We also study some basic properties of subspaces of aθ-regular space. Some applications: A space is paracompact iff the space is countablyθ-regular and semiparacompact. A generalizedFσ-subspace of a paracompact space is paracompact iff the subspace is countablyθ-regular.

2012 ◽  
Vol 45 (3) ◽  
Author(s):  
J. K. Kohli ◽  
Jeetendra Aggarwal

AbstractA new class of functions called ‘quasi cl-supercontinuous functions’ is introduced. Basic properties of quasi cl-supercontinuous functions are studied and their place in the hierarchy of variants of continuity that already exist in the mathematical literature is elaborated. The notion of quasi cl-supercontinuity, in general, is independent of continuity but coincides with cl-supercontinuity (≡ clopen continuity) (Applied General Topology 8(2) (2007), 293–300; Indian J. Pure Appl. Math. 14(6) (1983), 767–772), a significantly strong form of continuity, if range is a regular space. The class of quasi cl-supercontinuous functions properly contains each of the classes of (i) quasi perfectly continuous functions and (ii) almost cl-supercontinuous functions; and is strictly contained in the class of quasi


2012 ◽  
Vol 11 (01) ◽  
pp. 1250014 ◽  
Author(s):  
PAPIYA BHATTACHARJEE

This paper studies algebraic frames L and the set Min (L) of minimal prime elements of L. We will endow the set Min (L) with two well-known topologies, known as the Hull-kernel (or Zariski) topology and the inverse topology, and discuss several properties of these two spaces. It will be shown that Min (L) endowed with the Hull-kernel topology is a zero-dimensional, Hausdorff space; whereas, Min (L) endowed with the inverse topology is a T1, compact space. The main goal will be to find conditions on L for the spaces Min (L) and Min (L)-1 to have various topological properties; for example, compact, locally compact, Hausdorff, zero-dimensional, and extremally disconnected. We will also discuss when the two topological spaces are Boolean and Stone spaces.


1974 ◽  
Vol 19 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Victor Bryant

We shall start by recalling the definition and some basic properties of a convexity space; a topological convexity space (tcs) will then be a convexity space together with an admissible topology, and will be a generalisation of a topological vector space (tvs). After showing that the usual tvs results connecting the linear and topological properties extend to this new setting we then prove a form of the Krein-Milman theorem in a tcs.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Juan Carlos Ferrando

IfXis a completely regular space, first we characterize those spacesCbXwhose compact sets are metrizable. Then we use this result to provide a general condition forXto ensure the metrizability of compact sets inCbX. Finally, we characterize those spacesCbXthat have aG-basis.


2013 ◽  
Vol 11 (12) ◽  
Author(s):  
Ľubica Holá

AbstractWe show that a completely regular space Y is a p-space (a Čech-complete space, a locally compact space) if and only if given a dense subspace A of any topological space X and a continuous f: A → Y there are a p-embedded subset (resp. a G δ-subset, an open subset) M of X containing A and a quasicontinuous subcontinuous extension f*: M → Y of f continuous at every point of A. A result concerning a continuous extension to a residual set is also given.


Author(s):  
Manuel Felipe Cerpa-Torres ◽  
Michael A. Rincón-Villamizar

For a locally compact Hausdorff space K and a Banach space X, let C0K,X be the Banach space of all X-valued continuous functions defined on K, which vanish at infinite provided with the sup norm. If X is ℝ, we denote C0K,X as C0K. If AK be an extremely regular subspace of C0K and T:AK⟶C0S,X is an into isomorphism, what can be said about the set-theoretical or topological properties of K and S? Answering the question, we will prove that if X contains no copy of c0, then the cardinality of K is less than that of S. Moreover, if TT−1<3 and AK is also a subalgebra of C0K, the cardinality of the αth derivative of K is less than that of the αth derivative of S, for each ordinal α. Finally, if λX>1 and TT−1<λX, then K is a continuous image of a subspace of S. Here, λX is the geometrical parameter introduced by Jarosz in 1989: λX=infmaxx+λy:λ=1:x=y=1. As a consequence, we improve classical results about into isomorphisms from extremely regular subspaces already obtained by Cengiz.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. J. Font ◽  
A. Miralles ◽  
M. Sanchis

We characterize compact sets of𝔼1endowed with the level convergence topologyτℓ. We also describe the completion(𝔼1̂,𝒰̂)of𝔼1with respect to its natural uniformity, that is, the pointwise uniformity𝒰, and show other topological properties of𝔼1̂, as separability. We apply these results to give an Arzela-Ascoli theorem for the space of(𝔼1,τℓ)-valued continuous functions on a locally compact topological space equipped with the compact-open topology.


2012 ◽  
Vol 88 (1) ◽  
pp. 12-16 ◽  
Author(s):  
M. R. KOUSHESH

AbstractA space $Y$ is called an extension of a space $X$ if $Y$ contains $X$ as a dense subspace. An extension $Y$ of $X$ is called a one-point extension of $X$ if $Y\setminus X$ is a singleton. P. Alexandroff proved that any locally compact non-compact Hausdorff space $X$ has a one-point compact Hausdorff extension, called the one-point compactification of $X$. Motivated by this, Mrówka and Tsai [‘On local topological properties. II’, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.19 (1971), 1035–1040] posed the following more general question: For what pairs of topological properties ${\mathscr P}$ and ${\mathscr Q}$ does a locally-${\mathscr P}$ space $X$ having ${\mathscr Q}$ possess a one-point extension having both ${\mathscr P}$ and ${\mathscr Q}$? Here, we provide an answer to this old question.


Sign in / Sign up

Export Citation Format

Share Document