scholarly journals Topological convexity spaces

1974 ◽  
Vol 19 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Victor Bryant

We shall start by recalling the definition and some basic properties of a convexity space; a topological convexity space (tcs) will then be a convexity space together with an admissible topology, and will be a generalisation of a topological vector space (tvs). After showing that the usual tvs results connecting the linear and topological properties extend to this new setting we then prove a form of the Krein-Milman theorem in a tcs.

2018 ◽  
Vol 14 (3) ◽  
pp. 184-192
Author(s):  
Radhi Ali ◽  
◽  
Jalal Hussein Bayati ◽  
Suhad Hameed

1990 ◽  
Vol 33 (1) ◽  
pp. 53-59 ◽  
Author(s):  
E. Ansari-Piri

The famous Cohen factorization theorem, which says that every Banach algebra with bounded approximate identity factors, has already been generalized to locally convex algebras with what may be termed “uniformly bounded approximate identities”. Here we introduce a new notion, that of fundamentality generalizing both local boundedness and local convexity, and we show that a fundamental Fréchet algebra with uniformly bounded approximate identity factors. Fundamentality is a topological vector space property rather than an algebra property. We exhibit some non-fundamental topological vector space and give a necessary condition for Orlicz space to be fundamental.


1974 ◽  
Vol 26 (4) ◽  
pp. 841-853 ◽  
Author(s):  
Robert A. Fontenot

This paper is motivated by work in two fields, the theory of strict topologies and topological measure theory. In [1], R. C. Buck began the study of the strict topology for the algebra C*(S) of continuous, bounded real-valued functions on a locally compact Hausdorff space S and showed that the topological vector space C*(S) with the strict topology has many of the same topological vector space properties as C0(S), the sup norm algebra of continuous realvalued functions vanishing at infinity. Buck showed that as a class, the algebras C*(S) for S locally compact and C*(X), for X compact, were very much alike. Many papers on the strict topology for C*(S), where S is locally compact, followed Buck's; e.g., see [2; 3].


2016 ◽  
Vol 28 (4) ◽  
pp. 472-507 ◽  
Author(s):  
MARIE KERJEAN ◽  
CHRISTINE TASSON

In this paper, we describe a denotational model of Intuitionist Linear Logic which is also a differential category. Formulas are interpreted as Mackey-complete topological vector space and linear proofs are interpreted as bounded linear functions. So as to interpret non-linear proofs of Linear Logic, we use a notion of power series between Mackey-complete spaces, generalizing entire functions in $\mathbb{C}$. Finally, we get a quantitative model of Intuitionist Differential Linear Logic, with usual syntactic differentiation and where interpretations of proofs decompose as a Taylor expansion.


1994 ◽  
Vol 17 (4) ◽  
pp. 687-692 ◽  
Author(s):  
Martin M. Kovár

In this paper we studyθ-regularity and its relations to other topological properties. We show that the concepts ofθ-regularity (Janković, 1985) and point paracompactness (Boyte, 1973) coincide. Regular, strongly locally compact or paracompact spaces areθ-regular. We discuss the problem when a (countably)θ-regular space is regular, strongly locally compact, compact, or paracompact. We also study some basic properties of subspaces of aθ-regular space. Some applications: A space is paracompact iff the space is countablyθ-regular and semiparacompact. A generalizedFσ-subspace of a paracompact space is paracompact iff the subspace is countablyθ-regular.


10.37236/75 ◽  
2009 ◽  
Vol 16 (2) ◽  
Author(s):  
Richard P. Stanley

Promotion and evacuation are bijections on the set of linear extensions of a finite poset first defined by Schützenberger. This paper surveys the basic properties of these two operations and discusses some generalizations. Linear extensions of a finite poset $P$ may be regarded as maximal chains in the lattice $J(P)$ of order ideals of $P$. The generalizations concern permutations of the maximal chains of a wider class of posets, or more generally bijective linear transformations on the vector space with basis consisting of the maximal chains of any poset. When the poset is the lattice of subspaces of ${\Bbb F}_q^n$, then the results can be stated in terms of the expansion of certain Hecke algebra products.


2020 ◽  
Vol 19 ◽  

The purpose of the present paper is to introduce the new class of ω b - topological vector spaces. We study several basic and fundamental properties of ω b - topological and investigate their relationships with certain existing spaces. Along with other results, we prove that transformation of an open (resp. closed) set in aω b - topological vector space is ω b - open (resp. closed). In addition, some important and useful characterizations of ω b - topological vector spaces are established. We also introduce the notion of almost ω b - topological vector spaces and present several general properties of almost ω b - topological vector spaces.


2016 ◽  
Vol 19 (4) ◽  
pp. 160-168
Author(s):  
Dinh Nguyen ◽  
Mo Hong Tran

In this paper we establish characterizations of the containment of the set {xX: xC,g(x)K}{xX: f (x)0}, where C is a closed convex subset of a locally convex Hausdorff topological vector space, X, K is a closed convex cone in another locally convex Hausdorff topological vector space and g:X Y is a K- convex mapping, in a reverse convex set, define by the proper, lower semicontinuous, convex function. Here, no constraint qualification condition or qualification condition are assumed. The characterizations are often called asymptotic Farkas-type results. The second part of the paper was devoted to variant Asymptotic Farkas-type results where the mapping is a convex mapping with respect to an extended sublinear function. It is also shown that under some closedness conditions, these asymptotic Farkas lemmas go back to non-asymptotic Farkas lemmas or stable Farkas lemmas established recently in the literature. The results can be used to study the optimization


2021 ◽  
Vol 7 ◽  
pp. 20-36
Author(s):  
Raja Mohammad Latif

In 2016 A. Devika and A. Thilagavathi introduced a new class of sets called M*-open sets and investigated some properties of these sets in topological spaces. In this paper, we introduce and study a new class of spaces, namely M*-irresolute topological vector spaces via M*-open sets. We explore and investigate several properties and characterizations of this new notion of M*-irresolute topological vector space. We give several characterizations of M*-Hausdorff space. Moreover, we show that the extreme point of the convex subset of M*-irresolute topological vector space X lies on the boundary.


Sign in / Sign up

Export Citation Format

Share Document