scholarly journals Shape Optimization of a Labyrinth Seal Applying the Simulated Annealing Method

2004 ◽  
Vol 10 (5) ◽  
pp. 365-371 ◽  
Author(s):  
V. Schramm ◽  
J. Denecke ◽  
S. Kim ◽  
S. Wittig

In the present work, an environment for the shape optimization of a labyrinth seal is described. A program for a parameterized, automated grid generation is coupled with a commercial Computational Fluid Dynamics (CFD) flow solver and an optimization algorithm. Standard optimization strategies, like gradient-based methods, mostly are trapped to local optima. Therefore, the simulated annealing method is applied. It allows the finding of global minima or maxima of arbitrary functions.The presented optimization method is used to minimize the leakage through a three-finned, stepped labyrinth seal. For the optimization, the step position and the step height are chosen to be variable. The characteristics of the flow fields of selected seal configurations are compared and discussed against the background of the leakage behavior of the seal.

Author(s):  
Giridhar Reddy ◽  
Jonathan Cagan

Abstract A method for the design of truss structures which encourages lateral exploration, pushes away from violated spaces, models design intentions, and produces solutions with a wide variety of characteristics is introduced. An improved shape annealing algorithm for truss topology generation and optimization, based on the techniques of shape grammars and simulated annealing, implements the method. The algorithm features a shape grammar to model design intentions, an ability to incorporate geometric constraints to avoid obstacles, and a shape optimization method using only simulated annealing with more consistent convergence characteristics; no traditional gradient-based techniques are employed. The improved algorithm is illustrated on various structural examples generating a variety of solutions based on a simple grammar.


2012 ◽  
Vol 37 (4) ◽  
pp. 489-498 ◽  
Author(s):  
Min-Chie Chiu

Abstract Noise control is essential in an enclosed machine room where the noise level has to comply with the occupational safety and health act. In order to overcome a pure tone noise with a high peak value that is harmful to human hearing, a traditional reactive muffler has been used. However, the traditional method for designing a reactive muffler has proven to be time-consuming and insufficient. In order to efficiently reduce the peak noise level, interest in shape optimization of a Helmholtz muffler is coming to the forefront. Helmholtz mufflers that deal with a pure tone have been adequately researched. However, the shape optimization of multi-chamber Helmholtz mufflers that deal with a broadband noise hybridized with multiple tones within a constrained space has been mostly ignored. Therefore, this study analyzes the sound transmission loss (STL) and the best optimized design for a hybrid Helmholtz muffler under a space- constrained situation. On the basis of the plane wave theory, the four-pole system matrix used to evaluate the acoustic performance of a multi-tone hybrid Helmholtz muffler is presented. Two numerical cases for eliminating one/two tone noises emitted from a machine room using six kinds of mufflers (muffler A~F) is also introduced. To find the best acoustical performance of a space-constrained muffler, a numerical assessment using a simulated annealing (SA) method is adopted. Before the SA operation can be carried out, the accuracy of the mathematical model has been checked using the experimental data. Eliminating a broadband noise hybridized with a pure tone (130 Hz) in Case I reveals that muffler C composed of a one- chamber Helmholtz Resonator and a one-chamber dissipative element has a noise reduction of 54.9 (dB). Moreover, as indicated in Case II, muffler F, a two-chamber Helmholtz Resonator and a one-chamber dissipative element, has a noise reduction of 69.7 (dB). Obviously, the peak values of the pure tones in Case I and Case II are efficiently reduced after the muffler is added. Consequently, a successful approach in eliminating a broadband noise hybridized with multiple tones using optimally shaped hybrid Helmholtz mufflers and a simulated annealing method within a constrained space is demonstrated.


Author(s):  
Pēteris Grabusts ◽  
Jurijs Musatovs

This study describes an optimization method called Simulated Annealing. The Simulated Annealing method is widely used in various combinatorial optimization tasks. Simulated Annealing is a stochastic optimization method that can be used to minimize the specified cost function given a combinatorial system with multiple degrees of freedom. In this study the application of the Simulated Annealing method to a well - known task of combinatorial analysis, Travelling Salesman Problem, is demonstrated and an experiment aimed to find the shortest tour distances between educational institutions of Rēzekne Municipality is performed. It gives possibilities to analyze and search optimal schools' network in Rēzekne Municipality.


Soft Matter ◽  
2021 ◽  
Author(s):  
Zhiyao Liu ◽  
Zheng Wang ◽  
Yuhua Yin ◽  
Run Jiang ◽  
Baohui Li

Phase behavior of ABC star terpolymers confined between two identical parallel surfaces is systematically studied with a simulated annealing method. Several phase diagrams are constructed for systems with different bulk...


1993 ◽  
Vol 115 (3) ◽  
pp. 312-321 ◽  
Author(s):  
Tien-Sheng Chang ◽  
E. B. Magrab

A methodology to attain the highest fundamental natural frequency of a printed wiring board by rearranging its components has been developed. A general two-dimensional rearrangement algorithm is developed by which the rearrangement of the component-lead-board (CLB) assemblies is performed automatically for any combination of equal size, unequal size, movable and immovable CLBs. This algorithm is also capable of incorporating two design restrictions: fixed (immovable) components and prohibited (non-swappable) areas. A highly computationally efficient objective function for the evaluation of the automatic rearrangement process is introduced, which is a linear function of the size of the individual CLBs that have been selected for each interchange. The simulated annealing method is adapted to solve the combinatorial rearrangement of the CLBs. Using 61 combinations of boundary conditions, equal and unequal sized CLBs, movable and immovable CLBs, various CLB groupings and sets of material properties, it is found that, when compared to the exact solution obtained by an exhaustive search method, the simulated annealing method obtained the highest fundamental natural frequency within 1 percent for 87 percent of the cases considered, within 0.5 percent for 72 percent of the cases and the true maximum in 43 percent of them. To further increase the fundamental natural frequency the introduction of a single interior point support is analyzed. Depending on the boundary conditions an additional increase in the maximum fundamental natural frequency of 44 to 198 percent can be obtained.


Sign in / Sign up

Export Citation Format

Share Document