scholarly journals Rational drug design, medicinal chemistry, planned serendipity and the impact of automation on the drug discovery process

1993 ◽  
Vol 15 (1) ◽  
pp. 9-12 ◽  
Author(s):  
Seán O'Connor
2019 ◽  
Vol 39 (1) ◽  
Author(s):  
Ser-Xian Phua ◽  
Kwok-Fong Chan ◽  
Chinh Tran-To Su ◽  
Jun-Jie Poh ◽  
Samuel Ken-En Gan

AbstractThe reductionist approach is prevalent in biomedical science. However, increasing evidence now shows that biological systems cannot be simply considered as the sum of its parts. With experimental, technological, and computational advances, we can now do more than view parts in isolation, thus we propose that an increasing holistic view (where a protein is investigated as much as a whole as possible) is now timely. To further advocate this, we review and discuss several studies and applications involving allostery, where distant protein regions can cross-talk to influence functionality. Therefore, we believe that an increasing big picture approach holds great promise, particularly in the areas of antibody engineering and drug discovery in rational drug design.


2009 ◽  
Vol 9 (3) ◽  
pp. 304-318 ◽  
Author(s):  
TAP de Beer ◽  
GA Wells ◽  
PB Burger ◽  
F. Joubert ◽  
E. Marechal ◽  
...  

Author(s):  
Gurusamy Mariappan ◽  
Anju Kumari

Virtual screening plays an important role in the modern drug discovery process. The pharma companies invest huge amounts of money and time in drug discovery and screening. However, at the final stage of clinical trials, several molecules fail, which results in a large financial loss. To overcome this, a virtual screening tool was developed with super predictive power. The virtual screening tool is not only restricted tool small molecules but also to macromolecules such as protein, enzyme, receptors, etc. This gives an insight into structure-based and Ligand-based drug design. VS gives reliable information to direct the process of drug discovery (e.g., when the 3D image of the receptor is known, structure-based drug design is recommended). The pharmacophore-based model is advisable when the information about the receptor or any macromolecule is unknown. In this ADME, parameters such as Log P, bioavailability, and QSAR can be used as filters. This chapter shows both models with various representative examples that facilitate the scientist to use computational screening tools in modern drug discovery processes.


ADMET & DMPK ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 222-241
Author(s):  
Geoffrey Holdgate ◽  
Kevin Embrey ◽  
Alexander Milbradt ◽  
Gareth Davies

Biophysical methods such as mass spectrometry, surface plasmon resonance, nuclear magnetic resonance, and both differential scanning isothermal titration calorimetry are now well established as key components of the early drug discovery process. These approaches are used successfully for a range of activities, including assay development, primary screening, hit confirmation and detailed mechanistic characterisation of compound binding. Matching the speed, sensitivity and information content of the various techniques to the generation of critical data and information required at each phase of the drug discovery process has been key. This review describes the framework by which these methods have been applied in the drug discovery process and provides case studies to exemplify the impact.


2013 ◽  
Vol 1 (02) ◽  
pp. 60-73 ◽  
Author(s):  
Lakhyajit Boruah ◽  
Aparoop Das ◽  
Lalit Mohan Nainwal ◽  
Neha Agarwal ◽  
Brajesh Shankar

Computational methods play a central role in modern drug discovery process. It includes the design and management of small molecule libraries, initial hit identification through virtual screening, optimization of the affinity as well as selectivity of hits and improving the physicochemical properties of the lead compounds. In this review article, computational drug designing approaches have been elucidated and discussed. The key considerations and guidelines for virtual chemical library design and whole drug discovery process. Traditional approach for discovery of a new drug is a costly and time consuming affair besides not being so productive. A number of potential reasons witness choosing the In-silico method of drug design to be a more wise and productive approach. There is a general perception that applied science has not kept pace with the advances of basic science. Therefore, there is a need for the use of alternative tools to get answers on efficacy and safety faster, with more certainty and at lower cost. In-silico drug design can play a significant role in all stages of drug development from the initial lead designing to final stage clinical development.


Sign in / Sign up

Export Citation Format

Share Document