scholarly journals Development of Rolling Textures in an Austenitic Stainless Steel

1992 ◽  
Vol 19 (1-2) ◽  
pp. 101-121 ◽  
Author(s):  
C. D. Singh ◽  
V. Ramaswamy ◽  
C. Suryanarayana

Three dimensional texture analysis by means of orientation distribution functions (ODF) was used to examine the texture development during rolling at 473 K in an austenitic stainless steel. With the help of ODFs results, the different stages of texture development could be assigned to the existing theories of heterogeneous deformation mechanisms of low SFE face-centred cubic metals. The texture at very low degree of rolling consists of two limited orientation tubes with their fibre axes 〈110〉//ND and 〈110〉60∘ND and agrees with the predictions made by Taylor model. With further deformation, twinning causes the reduction of ≈{112}〈111〉 component and leads to the formation of twin {552}〈115〉. Abnormal slip on slip planes parallel to the twin boundaries rotates the twins into the {332}〈113〉 and {111}〈110〉 positions. The shear bands formation in the rotated twin-matrix lamellae changes their orientations near to {011}〈100〉 and {011}〈112〉 positions. Finally, normal slip again continues and sharpens the brass-type rolling texture.

1971 ◽  
Vol 4 (4) ◽  
pp. 303-310 ◽  
Author(s):  
H. J. Bunge ◽  
J. Tobisch ◽  
W. Sonntag

Three-dimensional orientation distribution functions of the crystallites in copper sheets, cold rolled to different degrees of reduction, have been determined using neutron diffraction pole figures. The main features of the textures may be represented by the orientation `tube' already described in prior publications. Two ranges of rolling reduction can be distinguished, a lower one (30 to 50%) and a higher one (70 to 95%) the texture changes of which correspond to those calculated after the Taylor theory. In an intermediate range (50 to 70%) a different deformation mechanism occurs which leads to an intermediate (001) [110] texture component. It is supposed that anisotropic hardening may have occurred in this range.


1994 ◽  
Vol 22 (3) ◽  
pp. 169-175 ◽  
Author(s):  
V. N. Dnieprenko ◽  
S. V. Divinskii

Sections of a three-dimensional Orientation Distribution Function (ODF) for the α-Fe rolling texture typical for most b.c.c. metals have been constructed on the basis of the proposed new method for ODF simulation through the representation of a crystallite orientation by nine rotations, only three of which are varied for a given component. The description of texture by superposition of partial fibre components in used. A comparison of such a model ODF with an ODF reconstructed from experimental pole figures by series expansion is presented. As a result all really encountered textures can be simulated by variation of the crystallite spread parameters, texture axis positions, and predominant preferred orientations in terms of a common approach.


Texture ◽  
1974 ◽  
Vol 1 (3) ◽  
pp. 157-171 ◽  
Author(s):  
D. Schläfer ◽  
H. J. Bunge

The development of the rolling texture of a low carbon steel was investigated by neutron diffraction calculating three-dimensional orientation distribution functions. The textures consist of two limited fibre axis components A and B centered about (1¯1¯1)[1¯21]+5∘ and (001)[1¯10] respectively with an angle of rotation of about 70∘. For rolling degrees larger than 50% the intensity of the fibre axis component A is being modulated so as to favour the orientation (1¯1¯2)[1¯10]. The texture may be considered as inverse to the low concentration brass texture in the sense of interchanging rolling and normal directions. It may be understood in terms of {110}〈111〉—glide and {112}〈111〉—twinning.


Microscopy ◽  
2016 ◽  
Author(s):  
Minoru Ochi ◽  
Rika Kawano ◽  
Takuya Maeda ◽  
Yukio Sato ◽  
Ryo Teranishi ◽  
...  

2011 ◽  
Vol 299-300 ◽  
pp. 127-130
Author(s):  
Yang Chen ◽  
Qi Mei Gao ◽  
Ni Tian

The rolling texture and its distribution along thickness direction in the Al alloy 6111 sheet cold rolled by synchronous Rolling and asynchronous rolling have been investigated with orientation distribution functions. The results show that the texture distribution is asymmetric on both sides of center layer of the sheet after cross shear rolling. The orientation densities of the main texture compounds on the slow roller side are higher, but are lower on the fast rolled side. The asymmetry of the texture distribution increases with improving the velocity ratio of asynchronous rolling.


1993 ◽  
Vol 22 (2) ◽  
pp. 73-85 ◽  
Author(s):  
V. N. Dnieprenko ◽  
S. V. Divinskii

New method for simulation of orientation distribution functions of textured materials has been proposed. The approach is based on the concept to describe any texture class by a superposition of anisotropic partial fibre components. The texture maximum spread is described in a “local” coordinate system connected with the texture component axis. A set of Eulerian angles γ1,γ2,γ3 are introduced with this aim. To specify crystallite orientations with respect to the sample coordinate system two additional sets of Eulerian angles are introduced besides γ1,γ2,γ3. One of them, (Ψ0,θ0,ϕ0), defines the direction of the texture axis of a component with respect to the directions of the cub. The other set, (Ψ1,θ1,ϕ1), is determined by the orientation of the texture component and its texture axis in the sample coordinate system. Analytical expressions approximating real spreads of crystallites in three-dimensional orientation space have been found and their corresponding model pole figures have been derived. The proposed approach to the texture spread description permits to simulate a broad spectrum of real textures from single crystals to isotropic polycrystals with a high enough degree of correspondence.


Sign in / Sign up

Export Citation Format

Share Document