scholarly journals Contribution of shear bands to rolling texture development in FCC metals and alloys.

1986 ◽  
Vol 25 (5) ◽  
pp. 404-410 ◽  
Author(s):  
Kenji Morii ◽  
Yutaka Nakayama
1992 ◽  
Vol 19 (1-2) ◽  
pp. 101-121 ◽  
Author(s):  
C. D. Singh ◽  
V. Ramaswamy ◽  
C. Suryanarayana

Three dimensional texture analysis by means of orientation distribution functions (ODF) was used to examine the texture development during rolling at 473 K in an austenitic stainless steel. With the help of ODFs results, the different stages of texture development could be assigned to the existing theories of heterogeneous deformation mechanisms of low SFE face-centred cubic metals. The texture at very low degree of rolling consists of two limited orientation tubes with their fibre axes 〈110〉//ND and 〈110〉60∘ND and agrees with the predictions made by Taylor model. With further deformation, twinning causes the reduction of ≈{112}〈111〉 component and leads to the formation of twin {552}〈115〉. Abnormal slip on slip planes parallel to the twin boundaries rotates the twins into the {332}〈113〉 and {111}〈110〉 positions. The shear bands formation in the rotated twin-matrix lamellae changes their orientations near to {011}〈100〉 and {011}〈112〉 positions. Finally, normal slip again continues and sharpens the brass-type rolling texture.


1993 ◽  
Vol 21 (4) ◽  
pp. 251-259 ◽  
Author(s):  
S. V. Divinskii ◽  
V. N. Dnieprenko

Simulation of the copper-type rolling texture development in FCC metals based on homogeneous slip under conditions of no constrains (Sachs-type model) is presented. Detailed analysis shows that, in fact, effective activation of a few (two or three, sometimes greater) independent slip systems occurs after reaching of some strain. These slip systems act by turns and may be essentially considered as acting simultaneously. Therefore, such extended description may be considered as a model which is intermediate between Taylor and Sachs ones. Taking these results into account, the characteristic features of main texture component development in copper under rolling have been studied by a computer simulation. Both octahedral, {111}, and cubic, {100}, slip planes are shown to act simultaneously in the process of the {112}〈111¯〉 component formation, but the action of only {111}〈11¯0〉 slip systems is characteristic for the {110}〈11¯2〉 component formation. The important role of the non-octahedral sip systems in plastic deformation processes in FCC metals of high staking-fault energy are also confirmed by the coincidence of model shear textures and experimental surface textures.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1059
Author(s):  
Michael E. Kassner ◽  
Roya Ermagan

Many (if not a majority) of metals and alloys evince substantial softening with torsion deformation to strains not usually achievable in tension. Of course, softening has long been observed by discontinuous dynamic recrystallization (DDRX) but this paper will discuss cases where softening is associated by texture development with large-strain deformation that is not reliant on changes in the dislocation density. This paper discusses the work of the current authors on FCC metals and alloys and extends to a new discussion of BCC and HCP cases. The analysis of the basis for torsional softening in BCC steel and HCP Zr discussed here is a novel concept that has not been addressed in the literature before.


1977 ◽  
Vol 11 (7) ◽  
pp. 581-585 ◽  
Author(s):  
J. Gil Sevillano ◽  
P. Van Houtte ◽  
E. Aernoudt

Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1351
Author(s):  
Shih-Chieh Hsiao ◽  
Sin-Ying Lin ◽  
Huang-Jun Chen ◽  
Ping-Yin Hsieh ◽  
Jui-Chao Kuo

A modified Taylor model, hereafter referred to as the MTCS(Mechanical-Twinning-withCoplanar-Slip)-model, is proposed in the present work to predict weak texture components in the shear bands of brass-type fcc metals with a twin–matrix lamellar (TML) structure. The MTCS-model considers two boundary conditions (i.e., twinning does not occur in previously twinned areas and coplanar slip occurs in the TML region) to simulate the rolling texture of Cu–30%Zn. In the first approximation, texture simulation using the MTCS-model revealed brass-type textures, including Y {1 1 1}⟨1 1 2⟩ and Z {1 1 1}⟨1 1 0⟩ components, which correspond to the observed experimental textures. Single orientations of C (1 1 2)[1 ¯ 1 ¯ 1] and S’ (1 2 3)[4¯ 1¯ 2] were applied to the MTCS-model to understand the evolution of Y and Z components. For the Y orientation, the C orientation rotates toward T (5 5 2)[1 1 5] by twinning after 30% reduction and then toward Y (1 1 1)[1 1 2] by coplanar slip after over 30% reduction. For the Z orientation, the S’ orientation rotates toward T’ (3 2 1)[2 1 ¯4¯] by twinning after 30% reduction and then toward Z (1 1 1)[1 0 1¯] by coplanar slip after over 30% reduction.


2020 ◽  
Vol 813 ◽  
pp. 152117 ◽  
Author(s):  
Fei Guo ◽  
Lei Liu ◽  
Yanlong Ma ◽  
Luyao Jiang ◽  
Yuhe Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document