scholarly journals High-Resolution Melting Analysis for Mutation Screening of RGSL1, RGS16, and RGS8 in Breast Cancer

2010 ◽  
Vol 20 (2) ◽  
pp. 397-407 ◽  
Author(s):  
Emilia Wiechec ◽  
Carsten Wiuf ◽  
Jens Overgaard ◽  
Lise Lotte Hansen
Gene ◽  
2012 ◽  
Vol 501 (2) ◽  
pp. 118-126 ◽  
Author(s):  
Masamune Aihara ◽  
Shigeru Yamamoto ◽  
Hiroko Nishioka ◽  
Yutaro Inoue ◽  
Kimikazu Hamano ◽  
...  

2008 ◽  
Vol 12 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Roberta Sestini ◽  
Aldesia Provenzano ◽  
Costanza Bacci ◽  
Claudio Orlando ◽  
Maurizio Genuardi ◽  
...  

2017 ◽  
Vol 35 ◽  
pp. 34-43 ◽  
Author(s):  
Wendy Pérez-Báez ◽  
Ethel A. García-Latorre ◽  
Héctor Aquiles Maldonado-Martínez ◽  
Iris Coronado-Martínez ◽  
Leonardo Flores-García ◽  
...  

2007 ◽  
Vol 53 (2) ◽  
pp. 349-352 ◽  
Author(s):  
Marina L Kennerson ◽  
Trent Warburton ◽  
Eva Nelis ◽  
Megan Brewer ◽  
Patsie Polly ◽  
...  

Abstract Background: X-linked Charcot-Marie-Tooth type 1 disease has been associated with 280 mutations in the GJB1 [gap junction protein, beta 1, 32kDa (connexin 32, Charcot-Marie-Tooth neuropathy, X-linked)] gene. High-resolution melting analysis with an automated instrument can be used to scan DNA for alterations, but its use in X-linked disorders has not been described. Methods: A 96-well LightScanner for high resolution melting analysis was used to scan amplicons of the GJB1 gene. All mutations reported in this study had been confirmed previously by sequence analysis. DNA samples were amplified with the double-stranded DNA-binding dye LC Green Plus. Melting curves were analyzed as fluorescence difference plots. The shift and curve shapes of melting profiles were used to distinguish controls from patient samples. Results: The method detected each of the 23 mutations used in this study. Eighteen known mutations provided validation of the high-resolution melting method and a further 5 mutations were identified in a blind study. Altered fluorescence difference curves for all the mutations were easily distinguished from the wild-type melting profile. Conclusion: High-resolution melting analysis is a simple, sensitive, and cost-efficient alternative method to scan for gene mutations in the GJB1 gene. The technology has the potential to reduce sequencing burden and would be suitable for mutation screening of exons of large multiexon genes that have been discovered to be associated with Charcot Marie Tooth neuropathy.


Sign in / Sign up

Export Citation Format

Share Document