high resolution melting analysis
Recently Published Documents


TOTAL DOCUMENTS

521
(FIVE YEARS 84)

H-INDEX

38
(FIVE YEARS 3)

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1466
Author(s):  
Maslin Osathanunkul ◽  
Panagiotis Madesis

The loss of forests is a major environmental, social, and economic problem. The disappearance has been occurring to an extreme degree in many parts of Southeast Asia, including Thailand. Logging and clearing of forests for agriculture, cash crops, and food production has destroyed much of the tropical forests in Thailand. Floristic inventory could provide essential information for forest conservation but species identification as a part of inventory creating could be challenging in some cases. Barcode DNA coupled with High Resolution Melting analysis (Bar-HRM) was used here in aiding species identification of plant in Dipterocarpaceae (Dipterocarpus alatus, D. costatu, D. intricatus, D. obtusifolius, Hopea ferrea, H. odorata, Shorea guiso, S. obtuse, S. roxburghii, and S. siamensis) and Fagaceae (Castanopsis echinocarpa, C. inermis, Lithocarpus wallichianus, Quercus aliena and Q. oidocarpa) families. Two main experiments were conducted including: (1) a comparing method for primer design and (2) testing the robustness of the Bar-HRM by trying to identify tree samples that did not have sequences in the GenBank. In experiment 1, the manual design primer pair was found to be the best fit for the work. Of key importance is finding the primers which give the most nucleotide variations within the generated amplicon; this is a parameter that cannot be set in any web-based tools. Next, in experiment 2, Bar-HRM using primers of ITS1 and ITS2 regions were able to discriminate all 10 tested tree species without any problem, even when there were no sequences of the samples to be analysed before performing the HRM. Here, Bar-HRM poses potential to be a game-changer in tropical forest conservation, as it will be useful for species identification.


Author(s):  
Maria De Bonis ◽  
Elisa De Paolis ◽  
Maria Elisabetta Onori ◽  
Giorgia Mazzuccato ◽  
Antonio Gatto ◽  
...  

AbstractPathogenic variants (PVs) in CYP24A1 gene are associated with Idiopathic Infantile Hypercalcemia disease (IIH). The identification of CYP24A1 PVs can be a useful tool for the improvement of target therapeutic strategies. Aim of this study is to set up a rapid and inexpensive High Resolution Melting Analysis (HRMA)-based method for the simultaneous genotyping of two hot spot PVs in CYP24A1 gene, involved in IIH. A duplex-HRMA (dHRMA) was designed in order to detect simultaneously CYP24A1 c.428_430delAAG, p.(Glu143del) (rs777676129) and c.1186C > T, p.(Arg396Trp) (rs114368325), in peculiar cases addressed to our Laboratory. dHRMA was able to identify clearly and simultaneously both hot spot CYP24A1 PVs evaluating melting curve shape and melting temperature (Tm). This is the first dHRMA approach to rapidly screen the two most frequent CYP24A1 PVs in peculiar case, providing useful information for diagnosis and patient management in IIH disease.


Sign in / Sign up

Export Citation Format

Share Document