Abstract 2589: Robust in vitro anti-tumor activity of Trastuzamab antibody drug conjugates in HER2 amplified cell lines

Author(s):  
Sankar Mohan ◽  
Carol O'Brien ◽  
Heidi Savage ◽  
Gail Phillips ◽  
Mark Lackner ◽  
...  
Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 616-623 ◽  
Author(s):  
Andrew G. Polson ◽  
Shang-Fan Yu ◽  
Kristi Elkins ◽  
Bing Zheng ◽  
Suzanna Clark ◽  
...  

Abstract Targeting cytotoxic drugs to cancer cells using antibody–drug conjugates (ADCs), particularly those with stable linkers between the drug and the antibody, could be an effective cancer treatment with low toxicity. However, for stable-linker ADCs to be effective, they must be internalized and degraded, limiting potential targets to surface antigens that are trafficked to lysosomes. CD79a and CD79b comprise the hetrodimeric signaling component of the B-cell receptor, and are attractive targets for the use of ADCs because they are B-cell–specific, expressed in non-Hodgkin lymphomas (NHL), and are trafficked to a lysosomal-like compartment as part of antigen presentation. We show here that the stable-linker ADCs anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are capable of target-dependent killing of nonHodgkin lymphoma cell lines in vitro. Further, these 2 ADCs are equally effective as low doses in xenograft models of follicular, mantle cell, and Burkitt lymphomas, even though several of these cell lines express relatively low levels of CD79b in vivo. In addition, we demonstrate that anti-CD79b ADCs were more effective than anti-CD79a ADCs and that, as hypothesized, anti-CD79b antibodies downregulated surface B-cell receptor and were trafficked to the lysosomal-like major histocompatibility complex class II–positive compartment MIIC. These results suggest that anti-CD79b-MCC-DM1 and anti-CD79b-MC-MMAF are promising therapeutics for the treatment of NHL.


2020 ◽  
Vol 12 ◽  
pp. 175883592092006
Author(s):  
Hang-Ping Yao ◽  
Sreedhar Reddy Suthe ◽  
Xiang-Min Tong ◽  
Ming-Hai Wang

The recepteur d’origine nantais (RON) receptor tyrosine kinase, belonging to the mesenchymal-to-epithelial transition proto-oncogene family, has been implicated in the pathogenesis of cancers derived from the colon, lung, breast, and pancreas. These findings lay the foundation for targeting RON for cancer treatment. However, development of RON-targeted therapeutics has not gained sufficient attention for the last decade. Although therapeutic monoclonal antibodies (TMABs) targeting RON have been validated in preclinical studies, results from clinical trials have met with limited success. This outcome diminishes pharmaceutical enthusiasm for further development of RON-targeted therapeutics. Recently, antibody–drug conjugates (ADCs) targeting RON have drawn special attention owing to their increased therapeutic activity. The rationale for developing anti-RON ADCs is based on the observation that cancer cells are not sufficiently addicted to RON signaling for survival. Thus, TMAB-mediated inhibition of RON signaling is ineffective for clinical application. In contrast, anti-RON ADCs combine a target-specific antibody with potent cytotoxins for cancer cell killing. This approach not only overcomes the shortcomings in TMAB-targeted therapies but also holds the promise for advancing anti-RON ADCs into clinical trials. In this review, we discuss the latest advancements in the development of anti-RON ADCs for targeted cancer therapy including drug conjugation profile, pharmacokinetic properties, cytotoxic effect in vitro, efficacy in tumor models, and toxicological activities in primates.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A656-A656
Author(s):  
Naniye Malli Cetinbas ◽  
Travis Monnell ◽  
Winnie Lee ◽  
Kalli Catcott ◽  
Chen-Ni Chin ◽  
...  

BackgroundSTING pathway agonism has emerged as a potential therapeutic mechanism to stimulate an innate anti-tumor immune response. While in principle systemic administration of a STING agonist would have many therapeutic benefits, including the delivery of STING to all tumor lesions, such an approach may be limited by toxicity. Antibody-drug conjugates (ADCs) constitute a proven therapeutic modality that is ideally suited to allow systemic administration while stimulating the innate immunity in a targeted manner. We have previously demonstrated that targeted delivery of a STING agonist with an ADC induces robust anti-tumor immune responses.MethodsHerein we investigated the mechanism of action of tumor cell-targeted STING agonist ADCs. We evaluated STING pathway activation and anti-tumor activity elicited by ADCs harboring either wild type (wt) or mutant Fc deficient in Fcγ receptor (FcγR) binding in wt or STING knockout (ko) cancer cell mono-cultures, immune cell co-cultures, and in in vivo tumor models.ResultsConsistent with previous reports, the majority of cancer cell lines tested failed to induce STING pathway following STING agonist payload treatment in mono-cultures. In cancer cell:THP1 monocytic cell co-cultures, tumor-targeted STING agonist ADCs with wt Fc exhibited robust STING activation, whereas Fc-mutant ADCs or non-targeted control ADCs had minimal activity. Similar results were obtained when THP1 cells were treated in plates coated with target antigen without cancer cells, demonstrating STING activation in THP1 cells following FcγR-mediated uptake of antigen-bound ADCs. Tumor-targeted Fc-wt ADCs led to marked induction of STING pathway and cancer cell-killing in cancer cell:PBMC or primary monocyte co-cultures, and complete tumor regressions in in vivo tumors. Surprisingly, while at reduced levels relative to the Fc-wt ADCs, Fc-mutant ADCs exhibited significant activity in these in vitro and in vivo models, suggesting that tumor cell-intrinsic STING pathway may be activated in the presence of cues from immune cells. Consistently, STING agonist payload treatment in the presence of conditioned media from PBMC and primary monocyte but not from THP1 cultures, led to STING activation in cancer cell mono-cultures. Moreover, Fc-mutant ADCs had diminished activity in STING ko cancer cell:PBMC or primary monocyte co-cultures, demonstrating the contribution of tumor cell-intrinsic STING activation to the anti-tumor activity elicited by tumor cell-targeted STING agonist ADCs.ConclusionsIn conclusion, we demonstrated that tumor cell-targeted STING agonist ADCs induce robust anti-tumor activity through mechanisms involving both FcγR and tumor antigen-mediated ADC internalization and subsequent induction of STING pathway in immune cells and tumor cells.


Synlett ◽  
2021 ◽  
Author(s):  
Kazuki Takahashi ◽  
Akira Sugiyama ◽  
Kei Ohkubo ◽  
Toshifumi Tatsumi ◽  
Tatsuhiko Kodama ◽  
...  

IR700, a silicon phthalocyanine (SiPc) photosensitizer, is an antibody-drug conjugate payload used clinically. It is, however, the sole SiPc payload to date, possibly due to the difficulty of its synthesis, resulting from its asymmetric phathalocyanine skeleton. Here we report a new axially-substituted SiPc payload with easier synthesis. Trastuzumab conjugated with the SiPc showed light- and antigen-dependent cytotoxicity in HER2-overexpressed cancer cell lines.


2015 ◽  
Vol 12 (6) ◽  
pp. 1872-1879 ◽  
Author(s):  
Penny Bryant ◽  
Martin Pabst ◽  
George Badescu ◽  
Matthew Bird ◽  
William McDowell ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (7) ◽  
pp. e0131177 ◽  
Author(s):  
Roger R. Beerli ◽  
Tamara Hell ◽  
Anna S. Merkel ◽  
Ulf Grawunder

2019 ◽  
Vol 8 (4) ◽  
pp. e1565859 ◽  
Author(s):  
Maxine Bauzon ◽  
Penelope M. Drake ◽  
Robyn M. Barfield ◽  
Brandon M. Cornali ◽  
Igor Rupniewski ◽  
...  

2020 ◽  
Vol 6 (23) ◽  
pp. eaba6752 ◽  
Author(s):  
Zhefu Dai ◽  
Xiao-Nan Zhang ◽  
Fariborz Nasertorabi ◽  
Qinqin Cheng ◽  
Jiawei Li ◽  
...  

Most of the current antibody-drug conjugates (ADCs) in clinic are heterogeneous mixtures. To produce homogeneous ADCs, established procedures often require multiple steps or long reaction times. The introduced mutations or foreign sequences may cause high immunogenicity. Here, we explore a new concept of transforming CD38 enzymatic activity into a facile approach for generating site-specific ADCs. This was achieved through coupling bifunctional antibody-CD38 fusion proteins with designer dinucleotide-based covalent inhibitors with stably attached payloads. The resulting adenosine diphosphate–ribosyl cyclase–enabled ADC (ARC-ADC) with a drug-to-antibody ratio of 2 could be rapidly generated through single-step conjugation. The generated ARC-ADC targeting human epidermal growth factor receptor 2 (HER2) displays excellent stability and potency against HER2-positive breast cancer both in vitro and in vivo. This proof-of-concept study demonstrates a new strategy for production of site-specific ADCs. It may provide a general approach for the development of a novel class of ADCs with potentially enhanced properties.


Sign in / Sign up

Export Citation Format

Share Document