scholarly journals Abstract 3142: Determination of molecular patterns associated with the expression of the TMPRSS2-ERG fusion and ERG, EZH2, NKX3.1 and SPINK-1 genes to evaluate the clonal origin of multifocal prostate cancer and its association with disease progression

Author(s):  
Yenifer Yamile Segura Moreno ◽  
María Carolina SANABRIA SALAS ◽  
Jorge Andrés MESA LÓPEZ DE MESA ◽  
Rodolfo VARELA RAMIREZ ◽  
Natalia Lizeth ACOSTA VEGA ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3959
Author(s):  
Oluwaseun Adebayo Bamodu ◽  
Yuan-Hung Wang ◽  
Chen-Hsun Ho ◽  
Su-Wei Hu ◽  
Chia-Da Lin ◽  
...  

Background: prostate cancer (PCa) is a principal cause of cancer-related morbidity and mortality. Castration resistance and metastasis are clinical challenges and continue to impede therapeutic success, despite diagnostic and therapeutic advances. There are reports of the oncogenic activity of genetic suppressor element (GSE)1 in breast and gastric cancers; however, its role in therapy resistance, metastasis, and susceptibility to disease recurrence in PCa patients remains unclear. Objective: this study investigated the role of aberrantly expressed GSE1 in the metastasis, therapy resistance, relapse, and poor prognosis of advanced PCa. Methods: we used a large cohort of multi-omics data and in vitro, ex vivo, and in vivo assays to investigate the potential effect of altered GSE1 expression on advanced/castration-resistant PCa (CRPC) treatment responses, disease progression, and prognosis. Results: using a multi-cohort approach, we showed that GSE1 is upregulated in PCa, while tumor-associated calcium signal transducer 2 (TACSTD2) is downregulated. Moreover, the direct, but inverse, correlation interaction between GSE1 and TACSTD2 drives metastatic disease, castration resistance, and disease progression and modulates the clinical and immune statuses of patients with PCa. Patients with GSE1highTACSTD2low expression are more prone to recurrence and disease-specific death than their GSE1lowTACSTD2high counterparts. Interestingly, we found that the GSE1–TACSTD2 expression profile is associated with the therapy responses and clinical outcomes in patients with PCa, especially those with metastatic/recurrent disease. Furthermore, we demonstrate that the shRNA-mediated targeting of GSE1 (shGSE1) significantly inhibits cell proliferation and attenuates cell migration and tumorsphere formation in metastatic PC3 and DU145 cell lines, with an associated suppression of VIM, SNAI2, and BCL2 and the concomitant upregulation of TACSTD2 and BAX. Moreover, shGSE1 enhances sensitivity to the antiandrogens abiraterone and enzalutamide in vitro and in vivo. Conclusion: these data provide preclinical evidence of the oncogenic role of dysregulated GSE1–TACSTD2 signaling and show that the molecular or pharmacological targeting of GSE1 is a workable therapeutic strategy for inhibiting androgen-driven oncogenic signals, re-sensitizing CRPC to treatment, and repressing the metastatic/recurrent phenotypes of patients with PCa.


2021 ◽  
pp. 108039
Author(s):  
Qianqian Hu ◽  
Guoning Chen ◽  
Jili Han ◽  
Lu Wang ◽  
Xia Cui ◽  
...  
Keyword(s):  

2021 ◽  
Vol 14 (3) ◽  
pp. 188
Author(s):  
Ines Katzschmann ◽  
Heike Marx ◽  
Klaus Kopka ◽  
Ute Hennrich

For the PET imaging of prostate cancer, radiotracers targeting the prostate-specific membrane antigen (PSMA) are nowadays used in clinical practice. [18F]PSMA-1007, a radiopharmaceutical labeled with fluorine-18, has excellent properties for the detection of prostate cancer. Essential for the human use of a radiotracer is its production and quality control under GMP-compliance. For this purpose, all analytical methods have to be validated. [18F]PSMA-1007 is easily radiosynthesized in a one-step procedure and isolated using solid phase extraction (SPE) cartridges followed by formulation of a buffered injection solution and for the determination of its chemical and radiochemical purity a robust, fast and reliable quality control method using radio-HPLC is necessary. After development and optimizations overcoming problems in reproducibility, the here described radio-HPLC method fulfills all acceptance criteria—for e.g., specificity, linearity, and accuracy—and is therefore well suited for the routine quality control of [18F]PSMA-1007 before release of the radiopharmaceutical. Recently a European Pharmacopeia monograph for [18F]PSMA-1007 was published suggesting a different radio-HPLC method for the determination of its chemical and radiochemical purity. Since the here described method has certain advantages, not least of all easier technical implementation, it can be an attractive alternative to the monograph method. The here described method was successfully validated on several radio-HPLC systems in our lab and used for the analysis of more than 60 batches of [18F]PSMA-1007. Using this method, the chemical and radiochemical purity of [18F]PSMA-1007 can routinely be evaluated assuring patient safety.


Amongst the Fellows elected to the Royal Society in 1941 were W. T. Astbury for his studies using X-ray analysis to study the structures of natural fibres, and amongst the Foreign Members elected that year was Ross G. Harrison for his contributions to embryology. Astbury and Harrison were very different in temperament, and worked in very different fields on either side of the Atlantic, yet they were united in their approach to the study of biological phenomena. Both Astbury and Harrison believed that the organization and form of biological materials whether wool fibres or the limb-bud in an amphibian embryo depended on molecular structure and pattern. Moreover both were concerned with dynamic aspects of form; Astbury’s greatest achievement was to demonstrate the dynamic, reversible folding and stretching of proteins in the k-m-e-f group, and Harrison looked to changing molecular patterns to account for changing symmetries in the developing embryo. It was this common approach that brought them together and led to Harrison spending a brief month in Leeds where they and K. M. Rudall performed what have been described as ‘truly progressive experiments in molecular biology’. I believe this short series of experiments illuminates the character and work of both Harrison and Astbury and illustrates the difficulties, practical and conceptual, in carrying out ‘progressive experiments’. I shall begin by reviewing briefly the embryological background of the time before going on to discuss in detail the approaches of Harrison and Astbury to their work and the outcome of their collaboration.


1997 ◽  
Vol 3 (2) ◽  
pp. 47-50
Author(s):  
Walter L Strohmaier ◽  
Andreas Zumbraegel ◽  
Lennart Koschella ◽  
K Horst Bichler

2013 ◽  
Vol 112 (6) ◽  
pp. 766-774 ◽  
Author(s):  
Abdel-Rahmène Azzouzi ◽  
Eric Barret ◽  
Caroline M. Moore ◽  
Arnaud Villers ◽  
Clare Allen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document