SOX2, a Persistent Marker for Multipotential Neural Stem Cells Derived from Embryonic Stem Cells, the Embryo or the Adult

2004 ◽  
Vol 26 (2-4) ◽  
pp. 148-165 ◽  
Author(s):  
Pam Ellis ◽  
B. Matthew Fagan ◽  
Scott T. Magness ◽  
Scott Hutton ◽  
Olena Taranova ◽  
...  
2009 ◽  
Vol 28 (10) ◽  
pp. 1141-1146
Author(s):  
Jing WANG ◽  
Li-xin SHANG ◽  
Ya-li LI ◽  
Hong-mei PENG ◽  
Zhi-feng YAN ◽  
...  

Author(s):  
Rui-fang Li ◽  
Guo-xin Nan ◽  
Dan Wang ◽  
Chang Gao ◽  
Juan Yang ◽  
...  

Background: The specific effect of SV40T on neurocytes has been rarely investigated by the researchers. We transfected Schwann cells (SCs) that did not have differentiation ability with MPH 86 plasmid containing SV40T in order to explore the effects of SV40T on Schwann cells.Methods: SCs were transfected with MPH 86 plasmid carrying the SV40T gene and cultured in different media, as well as co-cultured with neural stem cells (NSCs). In our study, SCs overexpressing SV40T were defined as SV40T-SCs. The proliferation of these cells was detected by WST-1, and the expression of different biomarkers was analyzed by qPCR and immunohistochemistry. Results: SV40T induced the characteristics of NSCs, such as the ability to grow in suspension, form spheroid colonies and proliferate rapidly, in the SCs, which were reversed by knocking out SV40T by the Flip-adenovirus. In addition, SV40T upregulated the expressions of neural crest-associated markers Nestin, Pax3 and Slug, and down-regulated S100b as well as the markers of mature SCs MBP, GFAP and Olig1/2. These cells also expressed NSC markers like Nestin, Sox2, CD133 and SSEA-1, as well as early development markers of embryonic stem cells (ESCs) like BMP4, c-Myc, OCT4 and Gbx2. Co-culturing with NSCs induced differentiation of the SV40T-SCs into neuronal and glial cells. Conclusions: SV40T reprograms Schwann cells to stem-like cells at the stage of neural crest cells (NCCs) that can differentiate to neurocytes.


2002 ◽  
Vol 2 ◽  
pp. 1147-1166 ◽  
Author(s):  
Sally A. Moody ◽  
Hyun-Soo Je

The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies.


2010 ◽  
Vol 19 (4) ◽  
pp. 569-578 ◽  
Author(s):  
Cornelia M. Bertram ◽  
Susan M. Hawes ◽  
Simone Egli ◽  
Swee Lim Peh ◽  
Mirella Dottori ◽  
...  

Stem Cells ◽  
2012 ◽  
Vol 30 (2) ◽  
pp. 349-355 ◽  
Author(s):  
Jun-Feng Feng ◽  
Jing Liu ◽  
Xiu-Zhen Zhang ◽  
Lei Zhang ◽  
Ji-Yao Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document