Gonadotropin-Releasing Hormone Modifies Action Potential Generation in Sheep Pars distalis Gonadotropes

1993 ◽  
Vol 58 (6) ◽  
pp. 646-654 ◽  
Author(s):  
P.M. Heyward ◽  
C. Chen ◽  
I.J. Clarke
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benjamin Grieb ◽  
Sivaranjan Uppala ◽  
Gal Sapir ◽  
David Shaul ◽  
J. Moshe Gomori ◽  
...  

AbstractDirect and real-time monitoring of cerebral metabolism exploiting the drastic increase in sensitivity of hyperpolarized 13C-labeled metabolites holds the potential to report on neural activity via in-cell metabolic indicators. Here, we followed the metabolic consequences of curbing action potential generation and ATP-synthase in rat cerebrum slices, induced by tetrodotoxin and oligomycin, respectively. The results suggest that pyruvate dehydrogenase (PDH) activity in the cerebrum is 4.4-fold higher when neuronal firing is unperturbed. The PDH activity was 7.4-fold reduced in the presence of oligomycin, and served as a pharmacological control for testing the ability to determine changes to PDH activity in viable cerebrum slices. These findings may open a path towards utilization of PDH activity, observed by magnetic resonance of hyperpolarized 13C-labeled pyruvate, as a reporter of neural activity.


2020 ◽  
Vol 7 (8) ◽  
pp. 201040
Author(s):  
Jonathon Penix ◽  
R. Anthony DeFazio ◽  
Eden A. Dulka ◽  
Santiago Schnell ◽  
Suzanne M. Moenter

Gonadotropin-releasing hormone (GnRH) neurons form the final pathway for the central neuronal control of fertility. GnRH is released in pulses that vary in frequency in females, helping drive hormonal changes of the reproductive cycle. In the common fertility disorder polycystic ovary syndrome (PCOS), persistent high-frequency hormone release is associated with disrupted cycles. We investigated long- and short-term action potential patterns of GnRH neurons in brain slices before and after puberty in female control and prenatally androgenized (PNA) mice, which mimic aspects of PCOS. A Monte Carlo (MC) approach was used to randomize action potential interval order. Dataset distributions were analysed to assess (i) if organization persists in GnRH neuron activity in vitro , and (ii) to determine if any organization changes with development and/or PNA treatment. GnRH neurons in adult control, but not PNA, mice produce long-term patterns different from MC distributions. Short-term patterns differ from MC distributions before puberty but become absorbed into the distributions with maturation, and the distributions narrow. These maturational changes are blunted by PNA treatment. Firing patterns of GnRH neurons in brain slices thus maintain organization dictated at least in part by the biologic status of the source and are disrupted in models of disease.


Sign in / Sign up

Export Citation Format

Share Document