bladder smooth muscle
Recently Published Documents


TOTAL DOCUMENTS

684
(FIVE YEARS 57)

H-INDEX

51
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tim Gerwinn ◽  
Souzan Salemi ◽  
Lisa Krattiger ◽  
Daniel Eberli ◽  
Maya Horst

Cell-based tissue engineering (TE) has been proposed to improve treatment outcomes in end-stage bladder disease, but TE approaches with 2D smooth muscle cell (SMC) culture have so far been unsuccessful. Here, we report the development of primary bladder-derived 3D SMC spheroids that outperform 2D SMC cultures in differentiation, maturation, and extracellular matrix (ECM) production. Bladder SMC spheroids were compared with 2D cultures using live-dead staining, qRT-PCR, immunofluorescence, and immunoblotting to investigate culture conditions, contractile phenotype, and ECM deposition. The SMC spheroids were viable for up to 14 days and differentiated rather than proliferating. Spheroids predominantly expressed the late myogenic differentiation marker MyH11, whereas 2D SMC expressed more of the general SMC differentiation marker α-SMA and less MyH11. Furthermore, the expression of bladder wall-specific ECM proteins in SMC spheroids was markedly higher. This first establishment and analysis of primary bladder SMC spheroids are particularly promising for TE because differentiated SMCs and ECM deposition are a prerequisite to building a functional bladder wall substitute. We were able to confirm that SMC spheroids are promising building blocks for studying detrusor regeneration in detail and may provide improved function and regenerative potential, contributing to taking bladder TE a significant step forward.


2021 ◽  
Vol 14 (10) ◽  
pp. 960
Author(s):  
Wei-Yi Wu ◽  
Shih-Pin Lee ◽  
Bing-Juin Chiang ◽  
Wei-Yu Lin ◽  
Chiang-Ting Chien

The urothelium displays mechano- and chemosensory functions via numerous receptors and channels. The calcium-sensing receptor (CaSR) detects extracellular calcium and modulates several physiological functions. Nonetheless, information about the expression and the role of CaSR in lower urinary tract has been absent. We aimed to determine the existence of urothelial CaSR in urinary bladder and its effect on micturition function. We utilized Western blot to confirm the expression of CaSR in bladder and used immunofluorescence to verify the location of the CaSR in the bladder urothelium via colocalization with uroplakin III A. The activation of urothelial CaSR via the CaSR agonist, AC-265347 (AC), decreased urinary bladder smooth muscle (detrusor) activity, whereas its inhibition via the CaSR antagonist, NPS-2143 hydrochloride (NPS), increased detrusor activity in in vitro myography experiments. Cystometry, bladder nerve activities recording, and bladder surface microcirculation detection were conducted to evaluate the effects of the urothelial CaSR via intravesical administrations. Intravesical AC inhibited micturition reflex, bladder afferent and efferent nerve activities, and reversed cystitis-induced bladder hyperactivity. The urothelial CaSR demonstrated a chemosensory function, and modulated micturition reflex via regulating detrusor activity. This study provided further evidence of how the urothelial CaSR mediated micturition and implicated the urothelial CaSR as a potential pharmacotherapeutic target in the intervention of bladder disorders.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11684
Author(s):  
Xiang Xie ◽  
Chuang Luo ◽  
Jia Yu Liang ◽  
Run Huang ◽  
Jia Li Yang ◽  
...  

Overactive bladder (OAB) is a common condition that affects a significant patient population. The N-methyl-D-aspartate receptor (NMDAR) has a role in developing bladder overactivity, pharmacological inhibition of which inhibits bladder overactivity. The common pathogenesis of OAB involves bladder smooth muscle (BSM) overactivity. In this study, a smooth muscle–specific NMDAR knockout (SMNRKO) mouse model was generated. The bladders from SMNRKO mice displayed normal size and weight with an intact bladder wall and well-arranged BSM bundles. Besides, SMNRKO mice had normal voiding patterns and urodynamics and BSM contractility, indicating that NMDAR in BSM was not essential for normal physiological bladder morphology and function. Unexpectedly, cyclophosphamide (CYP)-treated SMNRKO and wild-type (WT) mice had similar pathological changes in the bladder. Furthermore, SMNRKO mice displayed similar altered voiding patterns and urodynamic abnormalities and impaired BSM contractility compared with WT mice after CYP treatment. MK801 partially reversed the pathological bladder morphology and improved bladder dysfunction induced by CYP, but did not cause apparent differences between WT mice and SMNRKO mice, suggesting that NMDAR in BSM was not involved in pathological bladder morphology and function. Moreover, the direct instillation of NMDAR agonists or antagonists into the CYP-induced OAB did not affect bladder urodynamic function, indicating that NMDAR in BSM was not the pharmacotherapy target of MK801 for CYP-induced cystitis. The findings indicated that NMDAR in BSM was not essential for normal physiological or pathological bladder morphology and function, and MK801 improving pathological bladder function was not mediated by an action on NMDAR in BSM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saya Ito ◽  
Takeshi Nomura ◽  
Takashi Ueda ◽  
Shogo Inui ◽  
Yukako Morioka ◽  
...  

AbstractBladder outlet obstruction (BOO) often results in lower urinary tract symptoms (LUTSs) and negatively affects quality of life. Here, we evaluated gene expression patterns in the urinary bladder during tissue remodeling due to BOO. We divided BOO model rats into two groups according to the degree of hypertrophy of smooth muscle in the bladder. The strong muscular hypertrophy group, which exhibited markedly increased bladder smooth muscle proportion and HIF1α mRNA levels compared with the control group, was considered a model for the termination of hypertrophy, whereas the mild muscular hypertrophy group was considered a model of the initiation of hypertrophy. Some genes related to urinary function showed different expression patterns between the two groups. Furthermore, we found that several genes, including D-box binding PAR bZIP transcription factor (DBP), were upregulated only in the mild muscular hypertrophy group. DBP expression levels were increased in bladder smooth muscle cells in response to hypoxic stress. DBP associated with enhancer and promoter regions of NOS3 gene locus and upregulated NOS3 gene expression under hypoxic conditions. These findings suggested that the regulatory systems of gene expression were altered during tissue remodeling following BOO. Furthermore, circadian clock components might be involved in control of urinary function via transcriptional gene regulation in response to hypoxic stimuli.


2021 ◽  
Vol 153 (7) ◽  
Author(s):  
Sandra Pütz ◽  
Lisa Sophie Barthel ◽  
Marina Frohn ◽  
Doris Metzler ◽  
Mohammed Barham ◽  
...  

The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD's in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1−/− compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1−/− than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.


Sign in / Sign up

Export Citation Format

Share Document