Effect of Intraluminal PGE2 and Systemic Indomethacin on Sodium Chloride Transport in the Rat Distal Tubule

1983 ◽  
Vol 6 (3) ◽  
pp. 105-111
Author(s):  
R.T. Kunau, Jr. ◽  
C. Geiger ◽  
J. Hull ◽  
R.M. Wong-Garcia
itsrj ◽  
2017 ◽  
Vol 13 (1) ◽  
pp. 610
Author(s):  
Souichirou Sugiura ◽  
Satoru Tanaka ◽  
Chizuko Mizuniwa ◽  
Shimpei Takahashi

1986 ◽  
Vol 250 (4) ◽  
pp. F644-F648
Author(s):  
K. J. Howlin ◽  
R. J. Alpern ◽  
C. A. Berry ◽  
F. C. Rector

One- to two-thirds of NaCl absorption in the late proximal convoluted tubule (no luminal organic solutes present) is inhibited by cyanide and thus is dependent on active transport. To examine whether this active transport-dependent NaCl transport is electrogenic or electroneutral, the effect of cyanide on transepithelial potential difference (PD) was measured in the rat proximal convoluted tubule microperfused in vivo. In the presence of an ultrafiltrate-like luminal perfusate containing glucose and alanine, cyanide addition caused the transepithelial PD to change from -0.44 +/- 0.04 to -0.05 +/- 0.03 mV (P less than 0.001). In the presence of a late proximal tubular fluid (high chloride, low bicarbonate, no organics), the transepithelial PD was 1.23 +/- 0.06 mV and was unchanged at 1.19 +/- 0.05 mV after cyanide addition (NS). To eliminate the possibility that an effect of cyanide on a putative acidification-dependent lumen-positive PD was concealing an effect on an electrogenic sodium transport-dependent lumen-negative PD, the above studies were repeated in the presence of acetazolamide. Cyanide did not affect the transepithelial PD (1.17 +/- 0.05 vs. 1.07 +/- 0.06 mV, NS). We conclude that, although cyanide-inhibitable NaCl transport is electrogenic in the presence of luminal organic solutes, it does not generate a transepithelial PD in their absence and therefore is electroneutral.


2019 ◽  
Vol 22 ◽  
pp. 139-144
Author(s):  
Vojtěch Zacharda ◽  
Jiří Němeček

This contribution deals with the efficiency of electromigration of chlorides used as a repair method for reinforced concrete structures. Experimental studies of accelerated chloride transport tests were performed on samples of concrete without chlorides and with admixed sodium chloride during concreting. Two concrete types from Portland cement characterized with normal and low compressive strengths were studied. The electromigration was applied to penetrate chlorides into the chloride-free sample and for extraction of chlorides from the sample. The effectiveness of the chloride extraction process for rehabilitation of reinforced concrete in terms of lowering the chloride concentration in different concrete types and surface concentration was observed. Electrical extraction was found to be effective for lowering of initial chloride concentration by 15-20% after 24 hours. The decrease in surface concentrations was found in the range of 40-50%. The extraction process was found to be feasible and effective for both concrete types.


1985 ◽  
Vol 249 (4) ◽  
pp. F596-F602
Author(s):  
W. J. Welch ◽  
C. E. Ott ◽  
G. P. Guthrie ◽  
T. A. Kotchen

Renin release is increased in the adrenalectomized rat and is not inhibited by sodium chloride administration. The purpose of this study was to determine whether increased renin release is related to impaired absorptive chloride transport in the loop of Henle. Chloride transport in the loop was measured before and after acute saline infusion in three groups of rats: 1) saline-drinking adrenalectomized rats (Adx); 2) saline-drinking dexamethasone-treated adrenalectomized rats (Dex); and 3) water-drinking sham-operated controls. Unrelated to differences of arterial pressure, glomerular filtration rate, or net sodium chloride balance, chloride reabsorption in the loop of Henle of Adx [836 +/- 172 peq/min (SE)] was less (P less than 0.01) than in controls (1,646 +/- 353) and Dex (1,377 +/- 318) before saline infusion. After saline infusion, chloride delivery to the loop increased (P less than 0.05) in all three groups. However, loop chloride reabsorption increased (P less than 0.01) only in controls and Dex but not in Adx. Before saline infusion, plasma renin concentration (PRC) of Adx (350 +/- 108 U/ml) was greater (P less than 0.01) than that in controls (56 +/- 6) or Dex (108 +/- 36); sodium chloride infusion failed to inhibit PRC in Adx, whereas PRC was suppressed (P less than 0.01) by saline in Dex and controls. Thus stimulation of renin release in adrenalectomized animals was associated with decreased absorptive chloride transport in the loop of Henle. Dexamethasone normalized loop function and renin responsiveness to sodium chloride.


1981 ◽  
Vol 59 (2) ◽  
pp. 122-130 ◽  
Author(s):  
Gary A. Quamme

Superficial nephrons were perfused in vivo to determine the effect of intraluminal sulfate (1–20 mM) on electrolyte reabsorption in the rat with special reference to calcium and magnesium transport. This technique allowed us the opportunity of investigating separate electrolyte transfers without alteration of extrarenal influences. The major amount of perfused sulfate was absorbed in the proximal tubule with little absorption distal to the late proximal collection site. Phosphate transport was not affected by high luminal sulfate concentrations indicating distinct reabsorptive mechanisms for these two anions. Intraluminal sulfate significantly inhibited calcium and magnesium reabsorption in the proximal tubule, loop of Henle, and superficial distal tubule, in distinction to modest effects on sodium transport in these nephron segments. Chloride transport was not altered. The inhibition of divalent cation transfer was not quantitively similar in the different tubule segments. Small amounts of sulfate completely inhibited proximal calcium and magnesium reabsorption with little effect on transport within the loop of Henle. Enhanced distal delivery of sulfate significantly inhibited calcium and magnesium reabsorption in the distal tubule, a site where the sulfate anion is not reabsorbed. These results demonstrate the importance of distal delivery of anionic ligands capable of forming nonreabsorbable complexes. Thus distal calcium and magnesium transport may be greatly modified by proximal control of anion reabsorption.


Digestion ◽  
1998 ◽  
Vol 59 (6) ◽  
pp. 676-682 ◽  
Author(s):  
Josefine Schreiner ◽  
Matthias Weber ◽  
Klaus Loeschke

2013 ◽  
Vol 6 (1) ◽  
pp. 34-36
Author(s):  
Md Zahid Alam ◽  
AMB Safdar ◽  
Shabnam Jahan Hoque ◽  
Rownak Jahan Tamanna ◽  
Rowsan Ara ◽  
...  

Gitelman’s syndrome is an autosomal recessive disorder caused by a defect of the thiazide-sensitive sodium chloride co-transporter at the distal tubule, characterized by hypomagnesemia, hypokalemic alkalosis and hypocalciuria. We report a case of Gitlman’s syndrome in a 44 years old female patient who presented with generalized muscle weakness and carpal spasm and characteristic electrolyte abnormalities. This condition is sometimes confused with Bartter’s syndrome. DOI: http://dx.doi.org/10.3329/imcj.v6i1.14724 Ibrahim Med. Coll. J. 2012; 6(1): 34-36


Sign in / Sign up

Export Citation Format

Share Document