saline environment
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 104)

H-INDEX

26
(FIVE YEARS 6)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261682
Author(s):  
Somayeh Rasouli-Dogaheh ◽  
Jiří Komárek ◽  
Thomrat Chatchawan ◽  
Tomáš Hauer

Simple trichal types constitute a group of cyanobacteria with an abundance of novel, often cryptic taxa. Here, we investigated material collected from wet surface-soil in a saline environment in Petchaburi Province, central Thailand. A morphological comparison of the isolated strain with similar known species, as well as its phylogenetic and species delimitation analyses based on the combined datasets of other related organisms, especially simple trichal cyanobacteria, revealed that the material of this study represented an independent taxon. Using a multifaceted method, we propose that this material represents a new genus, Thainema gen. nov., belonging to the family Leptolyngbyaceae, with the type species Thainema salinarum sp. nov. This novel taxon shares similar ecological habitats with strains previously placed in the same lineage.


2021 ◽  
Vol 37 (6) ◽  
pp. 1421-1428
Author(s):  
M. Menaga M. Menaga ◽  
Sowmya Ramkumar ◽  
D. Nalini D. Nalini

The importance of mild steel lies in its industrial applications, and the fight against corrosion is very important from an ecological, economic, technical, and aesthetic view. The current study involves the use of pharmaceutical drugs namely GTN towards corrosion inhibiting reaction was examined by gravimetric and electrochemical approaches. From weight loss studies, maximum I.E (%) 94.04% reached for 60 mg/L concentration of GTN for 6 hrs immersion time. The Polarization measurements showed that the behaviour of GTN as mixed nature and surface assimilation of GTN at the superficial, such that water molecules are substituted at the solution-metal boundary. The corrosion resistance property of the studied inhibitor as coating was also evaluated in NaCl which shows better progress corrosion retardation property of coating in the saline medium. Theoretical calculations were employed using DFT to correlate with the experimental observations.


2021 ◽  
Vol 10 (1) ◽  
pp. 29
Author(s):  
Dawoon Chung ◽  
Woon-Jong Yu ◽  
Ji-Yeon Lim ◽  
Nam-Seon Kang ◽  
Yong-Min Kwon ◽  
...  

Salterns are hypersaline environments that are inhabited by diverse halophilic microorganisms, including fungi. In this study, we isolated a fungal strain SK1-1 from a saltern in the Republic of Korea, which was identified as Asperillus reticulatus. This is the first reported saline-environment-derived A. reticulatus that belongs to the Aspergillus penicillioides clade and encompasses xerophilic fungi. SK1-1 was halophilic, obligately requiring NaCl for growth, with a maximum radial growth of 6%–9% (w/v) NaCl. To facilitate the biotechnological application of halophilic fungi, we screened the SK1-1 strain for proteolytic activity. Proteases have widespread applications in food processing, detergents, textiles, and waste treatment, and halophilic proteases can enable protein degradation in high salt environments. We assessed the proteolytic activity of the extracellular crude enzyme of SK1-1 using azocasein as a substrate. The crude protease exhibited maximum activity at 40–50 °C, pH 9.5–10.5, and in the absence of NaCl. It was also able to retain up to 69% of its maximum activity until 7% NaCl. Protease inhibitor assays showed complete inhibition of the proteolytic activity of crude enzymes by Pefabloc® SC. Our data suggest that the halophilic A. reticulatus strain SK1-1 produces an extracellular alkaline serine protease.


2021 ◽  
Vol 7 (12) ◽  
pp. 1074
Author(s):  
Maia Azpiazu-Muniozguren ◽  
Alba Perez ◽  
Aitor Rementeria ◽  
Irati Martinez-Malaxetxebarria ◽  
Rodrigo Alonso ◽  
...  

The Añana Salt Valley in Spain is an active continental solar saltern formed 220 million years ago. To date, no fungal genomic studies of continental salterns have been published, although DNA metabarcoding has recently expanded researchers’ ability to study microbial community structures. Accordingly, the aim of this present study was to evaluate fungal diversity using the internal transcribed spacer (ITS) metabarcoding at different locations along the saltern (springs, ponds, and groundwater) to describe the fungal community of this saline environment. A total of 380 fungal genera were detected. The ubiquity of Saccharomyces was observed in the saltern, although other halotolerant and halophilic fungi like Wallemia, Cladosporium, and Trimmatostroma were also detected. Most of the fungi observed in the saltern were saprotrophs. The fungal distribution appeared to be influenced by surrounding conditions, such as the plant and soil contact, cereal fields, and vineyards of this agricultural region.


2021 ◽  
Author(s):  
Xiao Wei ◽  
Pengbo Zhang ◽  
Elena Bocharnikova ◽  
Vladimir Matichenkov

Abstract Salinity is one of the largest problems in the world today. Silicon (Si)-mediated increase in plant tolerance to saline environment has been well documented, while the underlying mechanisms remain unclear. Monosilicic acid, polysilicic acid, and sodium (Na) were analyzed in the apoplast and symplast of roots, stems and leaves of salt-stressed barley plants in dynamics. Sodium moved predominantly via apoplastic pathway. The dynamics of Na in apoplast represented a parabolic curve. Soluble Si in nutrient solution increased the total Na in the roots but restricted the Na root-to-shoot transport via apoplastic pathway and reduced Na accumulation in stems and leaves. Plant exposure to high concentration of Na resulted in increased polysilicic acids in the root symplast and stem apoplast and symplast. These increases are attributable to Si redistribution within plant with its accumulation in stressed tissue. Probably, Si moves in the form of polysilicic acid. Under optimum or low stress growth conditions, Si mainly accumulated in the roots and leaves. Under higher stress, this Si can be redistributed to a mostly stress-affected place.


2021 ◽  
Vol 06 (11) ◽  
Author(s):  
Ahmed Doumbia ◽  

In one of our previous articles, we developed a cassava starch material reinforced with coconut mesocarpfibers. Its properties have been evaluated. It appears that the behavior of the composite depends on the atmospheric conditions of exposure. The purpose of this work is to do a more in-depth physicochemical stability analysis. To do this, identical samples were exposed in different chemical environments: basic, saline, acidic and distilled water. The mass losses are measured after 75 days of immersion in the different solutions in three cases: films without addition of lime and fibers, film with the presence of lime and without reinforcements, and finally the composite with lime and fibers. We observe that, in all cases, the loss of mass decreases with the addition of lime and fibers. However, in the basic solution, this decrease is greater (53.4%) while it remains acceptable in a saline environment (1.1%). In short, this material can be used for several applications in the field of packaging such as the preservation of dry salty products.


2021 ◽  
Vol 8 (4) ◽  
pp. 67-77
Author(s):  
Zubair Aslam ◽  
Ali Ahmad ◽  
Anser Ali ◽  
Alam Sher ◽  
Muhammad Sarwar

Salicylic acid (SA) is mainly associated with the regulation of plant growth particularly in salinity stress conditions and this signaling molecule exists in pivotal parts of plant. The objective of this research analysis was to overcome stress condition by distinct foliar treatments of Salicylic acid, for instance, 0 and 100 mM. Foliar applications of SA on maize were rendered on 10 days later than transplanting under a hydroponics experiment. Plants were grown under non-saline (S0= 0 mM NaCl) and saline (S1= 100 mM NaCl) conditions. Evaluation of biochemical, physiological and morphological attributes of maize was rendered after harvesting of plants. The experimental layout of Completely Randomized Design (CRD) under a factorial arrangement with three replications of each treatment was assigned for this study. According to our results it was confirmed that cultivation of maize under saline condition reduced the morphological, physiological and biochemical attributes of plant. However, exogenous application of SA on maize had a positive impact on the above mentioned traits under presence and absence of saline environment. Finally, it was justified that exogenous application of variable concentration of SA significantly improves whole parameters of maize cultivar.


2021 ◽  
pp. 106441
Author(s):  
Giulia Scelsi ◽  
Ayman A. Abed ◽  
Gabriele Della Vecchia ◽  
Guido Musso ◽  
Wojciech T. Sołowski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document