scholarly journals Central Clock Regulates the Cervically Stimulated Prolactin Surges by Modulation of Dopamine and Vasoactive Intestinal Polypeptide Release in Ovariectomized Rats

2010 ◽  
Vol 91 (2) ◽  
pp. 179-188 ◽  
Author(s):  
Maristela O. Poletini ◽  
Jessica E. Kennett ◽  
De’Nise T. McKee ◽  
Marc E. Freeman
2021 ◽  
Author(s):  
Kayla E. Rohr ◽  
Thomas Inda ◽  
Jennifer A. Evans

Circadian rhythms in behavior and physiology are programmed by the suprachiasmatic nucleus (SCN) of the hypothalamus. A subset of SCN neurons produce the neuropeptide arginine vasopressin (AVP), but it remains unclear whether AVP signaling influences the SCN clock directly. Here we test that AVP signaling acting through V1A and V1B receptors influences molecular rhythms in SCN neurons. V1 receptor agonists were applied ex vivo to PERIOD2::LUCIFERASE SCN slices, allowing for real-time monitoring of changes in molecular clock function. V1A/B agonists reset the phase of the SCN molecular clock in a time-dependent manner, with larger magnitude responses by the female SCN. Further, we find evidence that both Gq and Gs signaling pathways interact with V1A/B-induced SCN resetting, and that this response requires vasoactive intestinal polypeptide (VIP) signaling. Collectively, this work indicates that AVP signaling resets SCN molecular rhythms in conjunction with VIP signaling and in a manner influenced by sex. This highlights the utility of studying clock function in both sexes and suggests that signal integration in central clock circuits regulates emergent properties important for the control of daily rhythms in behavior and physiology.


1980 ◽  
Vol 1 (1) ◽  
pp. 84-87 ◽  
Author(s):  
TOSHIO KANEKO ◽  
PO-YUAN CHENG ◽  
HIROSHI OKA ◽  
TOSHITSUGU ODA ◽  
NOBORU YANAIHARA ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Stuart A Collins ◽  
Ipe Ninan

Abstract The onset of several neuropsychiatric disorders including anxiety disorders coincides with adolescence. Consistently, threat extinction, which plays a key role in the regulation of anxiety-related behaviors, is diminished during adolescence. Furthermore, this attenuated threat extinction during adolescence is associated with an altered synaptic plasticity in the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for threat extinction. However, the mechanism underlying the altered plasticity in the IL-mPFC during adolescence is unclear. Given the purported role of vasoactive intestinal polypeptide expressing interneurons (VIPINs) in disinhibition and hence their potential to affect cortical plasticity, we examined whether VIPINs exhibit an adolescence-specific plasticity in the IL-mPFC. We observed an increase in GABAergic transmission and a decrease in excitability in VIPINs during adolescence. Male mice show a significantly higher VIPIN-pyramidal neuron GABAergic transmission compared with female mice. The observed increase in GABAergic transmission and a decrease in membrane excitability in VIPINs during adolescence could play a role in the altered plasticity in the adolescent IL-mPFC. Furthermore, the suppression of VIPIN-mediated GABAergic transmission in females might be relevant to sex differences in anxiety disorders.


Sign in / Sign up

Export Citation Format

Share Document