scholarly journals Hypoxia-Inducible Factor-1a Dependent Pathways Mediate the Renoprotective Role of Acetazolamide Against Renal Ischemia-Reperfusion Injury

2013 ◽  
Vol 32 (5) ◽  
pp. 1151-1166 ◽  
Author(s):  
Yu An ◽  
Jian-zhao Zhang ◽  
Jing Han ◽  
Hao-peng Yang ◽  
Lu Tie ◽  
...  
2013 ◽  
Vol 119 (3) ◽  
pp. 621-630 ◽  
Author(s):  
Ping Jia ◽  
Jie Teng ◽  
Jianzhou Zou ◽  
Yi Fang ◽  
Xiaoyan Zhang ◽  
...  

Abstract Background: MicroRNAs participate in the regulation of numerous physiological and disease processes. The in vivo role of microRNAs in anesthetics-conferred organoprotection is unknown. Methods: Mice were exposed for 2 h to either 70% xenon, or 70% nitrogen, 24 h before the induction of renal ischemia-reperfusion injury. The role of microRNA, miR-21, in renal protection conferred by the delayed xenon preconditioning was examined using in vivo knockdown of miR-21 and analysis of miR-21 target pathways. Results: Xenon preconditioning provided morphologic and functional protection against renal ischemia-reperfusion injury (n = 6), characterized by attenuation of renal tubular damage, apoptosis, and oxidative stress. Xenon preconditioning significantly increased the expression of miR-21 in the mouse kidney. A locked nucleic acid-modified anti–miR-21, given before xenon preconditioning, knocked down miR-21 effectively, and exacerbated subsequent renal ischemia-reperfusion injury. Mice treated with anti–miR-21 and ischemia-reperfusion injury showed significantly higher serum creatinine than antiscrambled oligonucleotides-treated mice, 24 h after ischemia-reperfusion (1.37 ± 0.28 vs. 0.81 ± 0.14 mg/dl; n = 5; P < 0.05). Knockdown of miR-21 induced significant up-regulation of programmed cell death protein 4 and phosphatase and tensin homolog deleted on chromosome 10, two proapoptotic target effectors of miR-21, and resulted in significant down-regulation of phosphorylated protein kinase B and increased tubular cell apoptosis. In addition, xenon preconditioning up-regulated hypoxia-inducible factor-1α and its downstream effector vascular endothelial growth factor in a time-dependent manner. Knockdown of miR-21 resulted in a significant decrease of hypoxia-inducible factor-1α. Conclusions: These results indicate that miR-21 contributes to the renoprotective effect of xenon preconditioning.


2004 ◽  
Vol 171 (4S) ◽  
pp. 487-487
Author(s):  
Motoo Araki ◽  
Masayoshi Miura ◽  
Hiromi Kumon ◽  
John Belperio ◽  
Robert Strieter ◽  
...  

2016 ◽  
Vol 2 (7) ◽  
pp. e87 ◽  
Author(s):  
Doreen Y.P. Fang ◽  
Bo Lu ◽  
Susan Hayward ◽  
David M. de Kretser ◽  
Peter J. Cowan ◽  
...  

2007 ◽  
Vol 293 (3) ◽  
pp. F741-F747 ◽  
Author(s):  
Kathrin Hochegger ◽  
Tobias Schätz ◽  
Philipp Eller ◽  
Andrea Tagwerker ◽  
Dorothea Heininger ◽  
...  

T cells have been implicated in the pathogenesis of renal ischemia-reperfusion injury (IRI). To date existing data about the role of the T cell receptor (Tcr) are contradictory. We hypothesize that the Tcr plays a prominent role in the late phase of renal IRI. Therefore, renal IRI was induced in α/β, γ/δ T cell-deficient and wild-type mice by clamping renal pedicles for 30 min and reperfusing for 24, 48, 72, and 120 h. Serum creatinine increased equally in all three groups 24 h after ischemia but significantly improved in Tcr-deficient animals compared with wild-type controls after 72 h. A significant reduction in renal tubular injury and infiltration of CD4+ T-cells in both Tcr-deficient mice compared with wild-type controls was detected. Infiltration of α/β T cells into the kidney was reduced in γ/δ T cell-deficient mice until 72 h after ischemia. In contrast, γ/δ T cell infiltration was equal in wild-type and α/β T cell-deficient mice, suggesting an interaction between α/β and γ/δ T cells. Data from γ/δ T cell-deficient mice were confirmed by in vivo depletion of γ/δ T cells in C57BL/6 mice. Whereas α/β T cell-deficient mice were still protected after 120 h, γ/δ T cell-deficient mice showed a “delayed wild-type phenotype” with a dramatic increase in kidney-infiltrating α/β, Tcr-expressing CD4+ T-cells. This report provides further evidence that α/β T cells are major effector cells in renal IRI, whereas γ/δ T cells play a role as mediator cells in the first 72 h of renal IRI.


2006 ◽  
Vol 104 (4) ◽  
pp. e135-e139 ◽  
Author(s):  
G. Li Volti ◽  
L.F. Rodella ◽  
C. Di Giacomo ◽  
R. Rezzani ◽  
R. Bianchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document