Local Mineralocorticoid Receptor Activation and the Role of Rac1 in Obesity-Related Diabetic Kidney Disease

2014 ◽  
Vol 126 (1) ◽  
pp. 16-24 ◽  
Author(s):  
Shigetaka Yoshida ◽  
Kenichi Ishizawa ◽  
Nobuhiro Ayuzawa ◽  
Kohei Ueda ◽  
Maki Takeuchi ◽  
...  
Author(s):  
Alberto Ortiz ◽  
Charles J Ferro ◽  
Olga Balafa ◽  
Michel Burnier ◽  
Robert Ekart ◽  
...  

Abstract Diabetic kidney disease develops in about 40% of patients with diabetes and is the commonest cause of chronic kidney disease worldwide. Patients with chronic kidney disease, especially those with diabetes mellitus, are at high risk of both developing kidney failure and cardiovascular death. The use of renin-angiotensin system blockers to reduce the incidence of kidney failure in patients with diabetic kidney disease dates back to studies that are now 20 or more years old. During the last few years sodium-glucose co-transporter-2 inhibitors have shown beneficial renal effects in randomized trials. However, even in response to combined treatment with renin-angiotensin system blockers and sodium-glucose co-transporter-2 inhibitors, the renal residual risk remains high with kidney failure only deferred, but not avoided. The risk of cardiovascular death also remains high even with optimal current treatment. Steroidal mineralocorticoid receptor antagonists reduce albuminuria and surrogate markers of cardiovascular disease in patients already on optimal therapy. However, their use has been curtailed by the significant risk of hyperkalaemia. In The FInerenone in reducing kiDnEy faiLure and dIsease prOgression in Diabetic Kidney Disease (FIDELIO-DKD) study comparing the actions of the non-steroidal mineralocorticoid receptor antagonist finerenone with placebo, finerenone reduced the progression of diabetic kidney disease and the incidence of cardiovascular events with a relatively safe adverse event profile. This document presents in detail the available evidence on the cardioprotective and nephroprotective effects of mineralocorticoid receptor antagonists, analyses the potential mechanisms involved and discusses their potential future place in the treatment of patients with diabetic chronic kidney disease.


2017 ◽  
Vol 312 (6) ◽  
pp. F951-F962 ◽  
Author(s):  
Josef G. Heuer ◽  
Shannon M. Harlan ◽  
Derek D. Yang ◽  
Dianna L. Jaqua ◽  
Jeffrey S. Boyles ◽  
...  

Transforming growth factor-alpha (TGFA) has been shown to play a role in experimental chronic kidney disease associated with nephron reduction, while its role in diabetic kidney disease (DKD) is unknown. We show here that intrarenal TGFA mRNA expression, as well as urine and serum TGFA, are increased in human DKD. We used a TGFA neutralizing antibody to determine the role of TGFA in two models of renal disease, the remnant surgical reduction model and the uninephrectomized (uniNx) db/db DKD model. In addition, the contribution of TGFA to DKD progression was examined using an adeno-associated virus approach to increase circulating TGFA in experimental DKD. In vivo blockade of TGFA attenuated kidney disease progression in both nondiabetic 129S6 nephron reduction and Type 2 diabetic uniNx db/db models, whereas overexpression of TGFA in uniNx db/db model accelerated renal disease. Therapeutic activity of the TGFA antibody was enhanced with renin angiotensin system inhibition with further improvement in renal parameters. These findings suggest a pathologic contribution of TGFA in DKD and support the possibility that therapeutic administration of neutralizing antibodies could provide a novel treatment for the disease.


1993 ◽  
Vol 22 (5) ◽  
pp. 722-726 ◽  
Author(s):  
Derek LeRoith ◽  
Haim Werner ◽  
Moshe Phillip ◽  
Charles T. Roberts

Nephron ◽  
2017 ◽  
Vol 137 (2) ◽  
pp. 137-147 ◽  
Author(s):  
Vikram Thakur ◽  
Syeda Nargis ◽  
Mayra Gonzalez ◽  
Swetak Pradhan ◽  
Daniel Terreros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document