Effect of Beta-Mimetic Drugs on Phospholipid Synthesis in the Isolated Lung

Author(s):  
W. Bernhard ◽  
B. M�ller ◽  
P. von Wichert
1967 ◽  
Vol 8 (6) ◽  
pp. 736-736
Author(s):  
C. Heymans ◽  
A. Delaunois
Keyword(s):  

Cell ◽  
2020 ◽  
Vol 180 (1) ◽  
pp. 135-149.e14 ◽  
Author(s):  
Maximilian Schütter ◽  
Patrick Giavalisco ◽  
Susanne Brodesser ◽  
Martin Graef

1979 ◽  
Vol 47 (6) ◽  
pp. 1228-1233 ◽  
Author(s):  
D. S. Simon ◽  
J. F. Murray ◽  
N. C. Staub

We evaluated the attenuation of the 122 keV gamma ray of cobalt-57 across the thorax of anesthetized dogs as a method for following the time course of lung water changes in acute pulmonary edema induced by either increased microvascular permeability or increased microvascular hydrostatic pressure. The gamma rays traversed the thorax centered on the seventh rib laterally where the lung mass in the beam path was greatest. Calibration measurements in isolated lung lobes demonstrated the high sensitivity and inherent accuracy of the method over a wide range of lung water contents. In control dogs reproducibility averaged +/-3%. Increased permeability edema led to large rapid increases in the transthoracic gamma ray attenuation (TGA), while increased pressure caused an immediate, modest increase in TGA (vascular congestion) followed by a slow further increase over 2 h. There was a fairly good correlation between the increase in extravascular lung water and the change in TGA. The method is simple, safe, and noninvasive and appears to be useful for following the time course of lung water accumulation in generalized lung edema in anesthetized animals.


1989 ◽  
Vol 257 (2) ◽  
pp. H415-H422 ◽  
Author(s):  
B. R. Walker ◽  
J. Haynes ◽  
H. L. Wang ◽  
N. F. Voelkel

Experiments were performed to determine the pulmonary vascular responses to exogenous or endogenous arginine vasopressin (AVP) in rats. Both in vitro and in vivo approaches were used to examine the direct pulmonary vasoactive properties of AVP and how those properties affect pulmonary hemodynamics in the intact animal. In conscious, unrestrained rats, constant infusion of AVP (4.0 mU.kg-1.min-1 iv) resulted in a fall in mean pulmonary artery pressure (PAP), although systemic pressure was increased. Coincident with the fall in PAP were similar reductions in cardiac output and heart rate. Similarly, bolus administration of AVP reduced PAP, and this effect was augmented during hypoxia. Another series of experiments examined the effect of endogenous AVP released by arterial hypoxemia on pulmonary hemodynamics in conscious rats. Administration of a specific V1-vasopressinergic antagonist had no effect on the PAP response to hypoxia; however, systemic resistance tended to fall following V1-antagonism. To determine the vasoactive properties of AVP independent of these changes in blood flow, a series of experiments were performed on isolated, perfused rat lungs. Injection of 25, 200, or 2,000 mU of AVP into the circulation of the isolated lung was without effect under normoxic conditions. In contrast, 25 mU AVP elicited reproducible pulmonary vasodilation when injected during ongoing hypoxic pulmonary vasoconstriction. This vasodilatory response was unaffected by meclofenamate or by the platelet-activating factor receptor antagonist SRI 63-441, but was blocked by a specific V1-vasopressinergic antagonist. We conclude that although AVP exerts profound systemic vasoconstriction, the pulmonary circulation appears relatively unaffected by exogenous or endogenous AVP in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 93 (4) ◽  
pp. 791-802 ◽  
Author(s):  
Hidde Bult ◽  
Jose J. Heiremans ◽  
Arnold G. Herman ◽  
Christiane M.A. Malcorps ◽  
Frank A.M. Peeters

Sign in / Sign up

Export Citation Format

Share Document