phospholipid synthesis
Recently Published Documents


TOTAL DOCUMENTS

482
(FIVE YEARS 33)

H-INDEX

48
(FIVE YEARS 3)

2021 ◽  
Vol 22 (20) ◽  
pp. 11174
Author(s):  
Chi Ma ◽  
Verena Martinez-Rodriguez ◽  
Peter R. Hoffmann

The selenoprotein family includes 25 members, many of which are antioxidant or redox regulating enzymes. A unique member of this family is Selenoprotein I (SELENOI), which does not catalyze redox reactions, but instead is an ethanolamine phosphotransferase (Ept). In fact, the characteristic selenocysteine residue that defines selenoproteins lies far outside of the catalytic domain of SELENOI. Furthermore, data using recombinant SELENOI lacking the selenocysteine residue have suggested that the selenocysteine amino acid is not directly involved in the Ept reaction. SELENOI is involved in two different pathways for the synthesis of phosphatidylethanolamine (PE) and plasmenyl PE, which are constituents of cellular membranes. Ethanolamine phospholipid synthesis has emerged as an important process for metabolic reprogramming that occurs in pluripotent stem cells and proliferating tumor cells, and this review discusses roles for upregulation of SELENOI during T cell activation, proliferation, and differentiation. SELENOI deficiency lowers but does not completely diminish de novo synthesis of PE and plasmenyl PE during T cell activation. Interestingly, metabolic reprogramming in activated SELENOI deficient T cells is impaired and this reduces proliferative capacity while favoring tolerogenic to pathogenic phenotypes that arise from differentiation. The implications of these findings are discussed related to vaccine responses, autoimmunity, and cell-based therapeutic approaches.


2021 ◽  
Author(s):  
Sumie Eto ◽  
Rumie Matsumura ◽  
Mai Fujimi ◽  
Yasuhiro Shimane ◽  
Samuel Berhanu ◽  
...  

Phospholipid synthesis is a fundamental process that promotes cell propagation and, presently, is the most challenging issue in artificial cell research aimed at reconstituting living cells from biomolecules. Here, we constructed a cell-free phospholipid synthesis system that combines in vitro fatty acid synthesis and a cell-free gene expression system that synthesizes acyltransferases for phospholipid synthesis. Fatty acids were synthesized from acetyl-CoA and malonyl-CoA, then continuously converted into phosphatidic acids by the cell-free synthesized acyltransferases. Because the system can avoid the accumulation of synthetic intermediates that suppress the reaction, the yield of phospholipid has significantly improved from previous schemes (up to 400 μM). Additionally, by adding enzymes for recycling CoA, we synthesized phosphatidic acids from acetic acid and bicarbonate as carbon sources. The constructed system is available to express the genes from pathogenic bacteria and to analyze the synthesized phospholipids. By encapsulating our system inside giant vesicles, it would be possible to construct the artificial cells in which the membrane grows and divides sustainably.


2021 ◽  
Vol 47 ◽  
pp. 101170
Author(s):  
Chi Ma ◽  
FuKun W. Hoffmann ◽  
Michael P. Marciel ◽  
Kathleen E. Page ◽  
Melodie A. Williams-Aduja ◽  
...  

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amit Pathania ◽  
Jamila Anba-Mondoloni ◽  
Myriam Gominet ◽  
David Halpern ◽  
Julien Dairou ◽  
...  

ABSTRACT Fatty acid biosynthesis (FASII) enzymes are considered valid targets for antimicrobial drug development against the human pathogen Staphylococcus aureus. However, incorporation of host fatty acids confers FASII antibiotic adaptation that compromises prospective treatments. S. aureus adapts to FASII inhibitors by first entering a nonreplicative latency period, followed by outgrowth. Here, we used transcriptional fusions and direct metabolite measurements to investigate the factors that dictate the duration of latency prior to outgrowth. We show that stringent response induction leads to repression of FASII and phospholipid synthesis genes. (p)ppGpp induction inhibits synthesis of malonyl-CoA, a molecule that derepresses FapR, a key regulator of FASII and phospholipid synthesis. Anti-FASII treatment also triggers transient expression of (p)ppGpp-regulated genes during the anti-FASII latency phase, with concomitant repression of FapR regulon expression. These effects are reversed upon outgrowth. GTP depletion, a known consequence of the stringent response, also occurs during FASII latency, and is proposed as the common signal linking these responses. We next showed that anti-FASII treatment shifts malonyl-CoA distribution between its interactants FapR and FabD, toward FapR, increasing expression of the phospholipid synthesis genes plsX and plsC during outgrowth. We conclude that components of the stringent response dictate malonyl-CoA availability in S. aureus FASII regulation, and contribute to latency prior to anti-FASII-adapted outgrowth. A combinatory approach, coupling a (p)ppGpp inducer and an anti-FASII, blocks S. aureus outgrowth, opening perspectives for bi-therapy treatment. IMPORTANCE Staphylococcus aureus is a major human bacterial pathogen for which new inhibitors are urgently needed. Antibiotic development has centered on the fatty acid synthesis (FASII) pathway, which provides the building blocks for bacterial membrane phospholipids. However, S. aureus overcomes FASII inhibition and adapts to anti-FASII by using exogenous fatty acids that are abundant in host environments. This adaptation mechanism comprises a transient latency period followed by bacterial outgrowth. Here, we use metabolite sensors and promoter reporters to show that responses to stringent conditions and to FASII inhibition intersect, in that both involve GTP and malonyl-CoA. These two signaling molecules contribute to modulating the duration of latency prior to S. aureus adaptation outgrowth. We exploit these novel findings to propose a bi-therapy treatment against staphylococcal infections.


Author(s):  
Jiaqi Ren ◽  
Mitchell C. Lock ◽  
Jack R. T. Darby ◽  
Sandra Orgeig ◽  
Stacey L. Holman ◽  
...  

Abstract Respiratory distress syndrome results from inadequate functional pulmonary surfactant and is a significant cause of mortality in preterm infants. Surfactant is essential for regulating alveolar interfacial surface tension, and its synthesis by Type II alveolar epithelial cells is stimulated by leptin produced by pulmonary lipofibroblasts upon activation by peroxisome proliferator-activated receptor γ (PPARγ). As it is unknown whether PPARγ stimulation or direct leptin administration can stimulate surfactant synthesis before birth, we examined the effect of continuous fetal administration of either the PPARγ agonist, rosiglitazone (RGZ; Study 1) or leptin (Study 2) on surfactant protein maturation in the late gestation fetal sheep lung. We measured mRNA expression of genes involved in surfactant maturation and showed that RGZ treatment reduced mRNA expression of LPCAT1 (surfactant phospholipid synthesis) and LAMP3 (marker for lamellar bodies), but did not alter mRNA expression of PPARγ, surfactant proteins (SFTP-A, -B, -C, and -D), PCYT1A (surfactant phospholipid synthesis), ABCA3 (phospholipid transportation), or the PPARγ target genes SPHK-1 and PAI-1. Leptin infusion significantly increased the expression of PPARγ and IGF2 and decreased the expression of SFTP-B. However, mRNA expression of the majority of genes involved in surfactant synthesis was not affected. These results suggest a potential decreased capacity for surfactant phospholipid and protein production in the fetal lung after RGZ and leptin administration, respectively. Therefore, targeting PPARγ may not be a feasible mechanistic approach to promote lung maturation.


2020 ◽  
Vol 477 (23) ◽  
pp. 4675-4688
Author(s):  
César G. Prucca ◽  
Ana C. Racca ◽  
Fabiola N. Velazquez ◽  
Andrés M. Cardozo Gizzi ◽  
Lucia Rodríguez Berdini ◽  
...  

Glioblastoma multiforme is the most aggressive type of tumor of the CNS with an overall survival rate of approximately one year. Since this rate has not changed significantly over the last 20 years, the development of new therapeutic strategies for the treatment of these tumors is peremptory. The over-expression of the proto-oncogene c-Fos has been observed in several CNS tumors including glioblastoma multiforme and is usually associated with a poor prognosis. Besides its genomic activity as an AP-1 transcription factor, this protein can also activate phospholipid synthesis by a direct interaction with key enzymes of their metabolic pathways. Given that the amino-terminal portion of c-Fos (c-Fos-NA: amino acids 1–138) associates to but does not activate phospholipid synthesizing enzymes, we evaluated if c-Fos-NA or some shorter derivatives are capable of acting as dominant-negative peptides of the activating capacity of c-Fos. The over-expression or the exogenous administration of c-Fos-NA to cultured T98G cells hampers the interaction between c-Fos and PI4K2A, an enzyme activated by c-Fos. Moreover, it was observed a decrease in tumor cell proliferation rates in vitro and a reduction in tumor growth in vivo when a U87-MG-generated xenograft on nude mice is intratumorally treated with recombinant c-Fos-NA. Importantly, a smaller peptide of 92 amino acids derived from c-Fos-NA retains the capacity to interfere with tumor proliferation in vitro and in vivo. Taken together, these results support the use of the N-terminal portion of c-Fos, or shorter derivatives as a novel therapeutic strategy for the treatment of glioblastoma multiforme.


Sign in / Sign up

Export Citation Format

Share Document