5 ht uptake
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 6)

H-INDEX

40
(FIVE YEARS 1)

2021 ◽  
Vol 25 (Suppl 2) ◽  
pp. S114-119
Author(s):  
Jae Heon Kim ◽  
Young Soo Ahn ◽  
Yun Seob Song

Purpose: Raised cerebral titers of acetylcholine have notable links with storage symptomatology related to lower urinary tract symptoms. The hippocampus contributes to the normal control of continence in the majority of instances (circuit 3). Owing to synaptic connections with other nerve cells, acetylcholine affects the micturition pathway via the liberation of additional cerebral neurotransmitters. Despite the fact that cerebral serotonin is a key inhibitor of reflex bladder muscle contractions, the influence of acetylcholine on its liberation is poorly delineated. The current research was conducted in order to explore the role of acetylcholine in serotonin liberation from sections of rat hippocampus in order to improve the comprehension of the relationship between cholinergic and serotonergic neurons.Methods: Hippocampal sections from 6 mature male Sprague-Dawley rats were equilibrated over a 30-minute period in standard incubation medium so as to facilitate [3H]5-hydroxytryptamine (5-HT) uptake. The cerebral neurotransmitter, acetylcholine, was applied to the sections. Aliquots of drained medium solution were utilized in order to quantify the radioactivity associated with [3H]5-HT liberation; any alterations in this parameter were noted.Results: When judged against the controls, [3H]5-HT liberation from the hippocampal sections remained unaltered following the administration of acetylcholine, implying that this agent has no inhibitory action on this process.Conclusions: Serotonin liberation from murine hippocampal sections is unaffected by acetylcholine. It is postulated that the bladder micturition reflex responds to acetylcholine through its immediate cholinergic activity rather than by its influence on serotonin release. These pathways are a promising target for the design of de novo therapeutic agents.


2021 ◽  
Vol 22 (15) ◽  
pp. 7807
Author(s):  
Petra Baković ◽  
Maja Kesić ◽  
Maja Perić ◽  
Ivona Bečeheli ◽  
Marina Horvatiček ◽  
...  

Serotonin (5-HT) plays an extensive role during pregnancy in regulating both the placental physiology and embryonic/fetal development. The uptake of 5-HT into cells is central to the control of local concentrations of 5-HT near its molecular targets. Here, we investigated the mechanisms of 5-HT uptake into human primary placental cells and cord blood platelets, all isolated immediately after birth. Trophoblasts and cord blood platelets showed 5-HT uptake with similar Michaelis constant (Km) values (~0.6 μM), typical of the high-affinity serotonin transporter (SERT). The uptake of 5-HT into trophoblasts was efficiently inhibited by various SERT-targeting drugs. In contrast, the uptake of 5-HT into feto-placental endothelial cells was not inhibited by a SERT blocker and showed a Km value (~782 μM) in the low-affinity range. Consistent with this, SERT mRNAs were abundant in term trophoblasts but sparse in feto-placental endothelial cells, whereas the opposite was found for the low-affinity plasma membrane monoamine transporter (PMAT) mRNAs. Organic cation transporter (OCT) 1, 2, and 3 mRNAs were absent or sparse in both cell types. In summary, the results demonstrate, for the first time, the presence of functional 5-HT uptake systems in feto-placental endothelial cells and fetal platelets, cells that are in direct contact with fetal blood plasma. The data also highlight the sensitivity to various psychotropic drugs of 5-HT transport into trophoblasts facing the maternal blood. The multiple, high-, and low-affinity systems present for the cellular uptake of 5-HT underscore the importance of 5-HT homeostasis at the maternal–fetal interface.


2021 ◽  
Author(s):  
Petra Bakovic ◽  
Maja Kesic ◽  
Marina Horvaticek ◽  
Meekha George ◽  
Maja Peric ◽  
...  

Cellular serotonin (5-HT) uptake is central to regulating local levels of 5-HT nearby its molecular targets. Here we studied 5-HT uptake mechanisms in primary placental cells and cord blood platelets, all isolated directly from the human tissues. All cell types took up 5-HT in a time- and temperature-dependent manner. In initial-rate experiments in primary term trophoblasts and cord blood platelets, saturation curves of active 5-HT uptake across multiple 5-HT concentrations were characteristic of the high-affinity transporter-mediated uptake mechanism. In contrast, primary term feto-placental endothelial cells displayed saturation kinetics only over the low-affinity range of 5-HT concentrations. Citalopram, a potent blocker of the serotonin transporter (SERT), inhibited 5-HT uptake in TMT, but not in PEC. In line with this, SERT mRNA was abundant in term trophoblasts, but sparse in feto-placental endothelial cells, while the opposite was found for transcripts of the low-affinity plasma membrane monoamine transporter (PMAT). 5-HT uptake into first trimester trophoblasts could not be saturated over the high-affinity range of 5-HT concentrations; as compared to term trophoblasts, first trimester trophoblasts expressed lower and higher levels of SERT and PMAT mRNAs, respectively. We conclude that 1) placental cells facing maternal and fetal blood at term of human pregnancy use different, low- and high-affinity, respectively, 5-HT uptake systems, 2) fetal platelets possess highly functional high-affinity 5-HT uptake activity, 3) 5-HT uptake mechanisms in trophoblasts change over the course of pregnancy. The multiple molecular mechanisms present for 5-HT uptake highlight the importance of maintaining 5-HT homeostasis at the maternal-fetal interface.


CNS Spectrums ◽  
2020 ◽  
pp. 1-10
Author(s):  
Donatella Marazziti ◽  
Laura Betti ◽  
Stefano Baroni ◽  
Lionella Palego ◽  
Federico Mucci ◽  
...  

Abstract Objective To provide evidence to the link between serotonin (5-HT), energy metabolism, and the human obese phenotype, the present study investigated the binding and function of the platelet 5-HT transporter (SERT), in relation to circulating insulin, leptin, and glycolipid metabolic parameters. Methods Seventy-four drug-free subjects were recruited on the basis of divergent body mass index (BMIs) (16.5-54.8 Kg/m2). All subjects were tested for their blood glycolipid profile together with platelet [3H]-paroxetine ([3H]-Par) binding and [3H]-5-HT reuptake measurements from April 1st to June 30th, 2019. Results The [3H]-Par Bmax (fmol/mg proteins) was progressively reduced with increasing BMIs (P < .001), without changes in affinity. Moreover, Bmax was negatively correlated with BMI, waist/hip circumferences (W/HC), triglycerides (TD), glucose, insulin, and leptin, while positively with high-density lipoprotein (HDL) cholesterol (P < .01). The reduction of 5-HT uptake rate (Vmax, pmol/min/109 platelets) among BMI groups was not statistically significant, but Vmax negatively correlated with leptin and uptake affinity values (P < .05). Besides, [3H]-Par affinity values positively correlated with glycemia and TD, while [3H]-5-HT reuptake affinity with glycemia only (P < .05). Finally, these correlations were specific of obese subjects, while, from multiple linear-regression analysis conducted on all subjects, insulin (P = .006) resulting negatively related to Bmax independently from BMI. Conclusions Present findings suggest the presence of a possible alteration of insulin/5-HT/leptin axis in obesity, differentially impinging the density, function, and/or affinity of the platelet SERT, as a result of complex appetite/reward-related interactions between the brain, gut, pancreatic islets, and adipose tissue. Furthermore, they support the foremost cooperation of peptides and 5-HT in maintaining energy homeostasis.


2020 ◽  
Vol 34 (12) ◽  
pp. 1393-1407 ◽  
Author(s):  
Allison N White ◽  
Joshua D Gross ◽  
Shane W Kaski ◽  
Kristen R Trexler ◽  
Kim A Wix ◽  
...  

Background: Regulator of G protein Signaling (RGS) proteins inhibit G protein-coupled receptor (GPCR) signaling, including the signals that arise from neurotransmitter release. We have shown that RGS12 loss diminishes locomotor responses of C57BL/6J mice to dopamine transporter (DAT)-targeting psychostimulants. This diminution resulted from a brain region-specific upregulation of DAT expression and function in RGS12-null mice. This effect on DAT prompted us to investigate whether the serotonin transporter (SERT) exhibits similar alterations upon RGS12 loss in C57BL/6J mice. Aims: Does RGS12 loss affect (a) hyperlocomotion to the preferentially SERT-targeting psychostimulant 3,4-methylenedioxymethamphetamine (MDMA), (b) SERT expression and function in relevant brain regions, and/or (c) serotonergically modulated behaviors? Methods: Open-field and spontaneous home-cage locomotor activities were quantified. 5-HT, 5-HIAA, and SERT levels in brain-region homogenates, as well as SERT expression and function in brain-region tissue preparations, were measured using appropriate biochemical assays. Serotonergically modulated behaviors were assessed using forced swim and tail suspension paradigms, elevated plus and elevated zero maze tests, and social interaction assays. Results: RGS12-null mice displayed no hyperlocomotion to 10 mg/kg MDMA. There were brain region-specific alterations in SERT expression and function associated with RGS12 loss. Drug-naïve RGS12-null mice displayed increases in both anxiety-like and anti-depressive-like behaviors. Conclusion: RGS12 is a critical modulator of serotonergic neurotransmission and serotonergically modulated behavior in mice; lack of hyperlocomotion to low dose MDMA in RGS12-null mice is related to an alteration of steady-state SERT expression and 5-HT uptake.


2018 ◽  
Vol 315 (6) ◽  
pp. R1154-R1166 ◽  
Author(s):  
Molly H. B. Amador ◽  
M. Danielle McDonald

In mammals, circulating serotonin [5-hydroxytryptamine (5-HT)] is sequestered by platelets via the 5-HT transporter (SERT) to prevent unintended signaling by this potent signaling molecule. Teleost fish appear to lack a similar circulating storage pool, although the diverse effects of 5-HT in teleosts likely necessitate an alternative method of tight regulation, such as uptake by peripheral tissues. Here, a 5-HT radiotracer was used to explore the 5-HT uptake capacity of peripheral tissues in the Gulf toadfish, Opsanus beta, and to elucidate the primary excretion routes of 5-HT and its metabolites. Pharmacological inhibition of SERT and other transporters enabled assessment of the SERT dependence of peripheral 5-HT uptake and excretion. The results indicated a rapid and substantial uptake of 5-HT by the heart atrium, heart ventricle, and gill that was at least partly SERT dependent. The results also supported the presence of a partial blood-brain barrier that prevented rapid changes in brain 5-HT content despite fluctuating plasma 5-HT concentrations. The renal pathway appeared to be the dominant excretory route for 5-HT and its metabolites over shorter time frames (up to ~30 min), but hepatic excretion was substantial over several hours. SERT inhibition ultimately reduced the excretion of 5-HT and its metabolites by urinary, biliary, and/or intestinal pathways. In addition, branchial excretion of 5-HT and its metabolites could not be ruled out. In summary, this study reveals that the toadfish heart and gill play active roles in regulating circulating 5-HT and yields important insights into the control of peripheral 5-HT in this teleost fish.


2017 ◽  
Vol 313 (6) ◽  
pp. H1087-H1097 ◽  
Author(s):  
Ulrich Gergs ◽  
Franziska Jung ◽  
Igor B. Buchwalow ◽  
Britt Hofmann ◽  
Andreas Simm ◽  
...  

Using transgenic (TG) mice that overexpress the human serotonin (5-HT)4a receptor specifically in cardiomyocytes, we wanted to know whether 5-HT can be formed and degraded in the mammalian heart and whether this can likewise lead to inotropic and chronotropic effects in this TG model. We noted that the 5-HT precursor 5-hydroxy-tryptophan (5-HTP) can exert inotropic and chronotropic effects in cardiac preparations from TG mice but not from wild-type (WT) mice; similar results were found in human atrial preparations as well as in intact TG animals using echocardiography. Moreover, by immunohistochemistry we could detect 5-HT metabolizing enzymes and 5-HT transporters in mouse hearts as well as in human atria. Hence, in the presence of an inhibitor of aromatic l-amino acid decarboxylase, the positive inotropic effects of 5-HTP were absent in TG and isolated human atrial preparations, and, moreover, inhibitors of enzymes involved in 5-HT degradation enhanced the efficacy of 5-HT in TG atria. A releaser of neurotransmitters increased inotropy in the isolated TG atrium, and this effect could be blocked by a 5-HT4a receptor antagonist. Fluoxetine, an inhibitor of 5-HT uptake, elevated the potency of 5-HT to increase contractility in the TG atrium. In addition, inhibitors of organic cation and monoamine transporters apparently reduced the positive inotropic potency of 5-HT in the TG atrium. Hence, we tentatively conclude that a local production and degradation of 5-HT in the mammalian heart and more specifically in mammalian myocytes probably occurs. Conceivably, this formation of 5-HT and possibly impaired degradation may be clinically relevant in cases of unexplained tachycardia and other arrhythmias. NEW & NOTEWORTHY The present work suggests that inotropically active serotonin (5-HT) can be formed in the mouse and human heart and probably by cardiomyocytes themselves. Moreover, active degradation of 5-HT seems to occur in the mammalian heart. These findings may again increase the interest of researchers for cardiac effects of 5-HT.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Valéry Matarazzo ◽  
Laura Caccialupi ◽  
Fabienne Schaller ◽  
Yuri Shvarev ◽  
Nazim Kourdougli ◽  
...  

Prader-Willi syndrome (PWS) is a genetic neurodevelopmental disorder that presents with hypotonia and respiratory distress in neonates. The Necdin-deficient mouse is the only model that reproduces the respiratory phenotype of PWS (central apnea and blunted response to respiratory challenges). Here, we report that Necdin deletion disturbs the migration of serotonin (5-HT) neuronal precursors, leading to altered global serotonergic neuroarchitecture and increased spontaneous firing of 5-HT neurons. We show an increased expression and activity of 5-HT Transporter (SERT/Slc6a4) in 5-HT neurons leading to an increase of 5-HT uptake. In Necdin-KO pups, the genetic deletion of Slc6a4 or treatment with Fluoxetine, a 5-HT reuptake inhibitor, restored normal breathing. Unexpectedly, Fluoxetine administration was associated with respiratory side effects in wild-type animals. Overall, our results demonstrate that an increase of SERT activity is sufficient to cause the apneas in Necdin-KO pups, and that fluoxetine may offer therapeutic benefits to PWS patients with respiratory complications.


2016 ◽  
Vol 473 (13) ◽  
pp. 1953-1965 ◽  
Author(s):  
Pascal Seyer ◽  
Franck Vandermoere ◽  
Elisabeth Cassier ◽  
Joël Bockaert ◽  
Philippe Marin

The activity of serotonergic systems depends on the reuptake of extracellular serotonin via its plasma membrane serotonin [5-HT (5-hydroxytryptamine)] transporter (SERT), a member of the Na+/Cl−-dependent solute carrier 6 family. SERT is finely regulated by multiple molecular mechanisms including its physical interaction with intracellular proteins. The majority of previously identified SERT partners that control its functional activity are soluble proteins, which bind to its intracellular domains. SERT also interacts with transmembrane proteins, but its association with other plasma membrane transporters remains to be established. Using a proteomics strategy, we show that SERT associates with ASCT2 (alanine–serine–cysteine–threonine 2), a member of the solute carrier 1 family co-expressed with SERT in serotonergic neurons and involved in the transport of small neutral amino acids across the plasma membrane. Co-expression of ASCT2 with SERT in HEK (human embryonic kidney)-293 cells affects glycosylation and cell-surface localization of SERT with a concomitant reduction in its 5-HT uptake activity. Conversely, depletion of cellular ASCT2 by RNAi enhances 5-HT uptake in both HEK-293 cells and primary cultured mesencephalon neurons. Mimicking the effect of ASCT2 down-regulation, treatment of HEK-293 cells and neurons with the ASCT2 inhibitor D-threonine also increases 5-HT uptake. Moreover, D-threonine does not enhance further the maximal velocity of 5-HT uptake in cells depleted of ASCT2. Collectively, these findings provide evidence for a complex assembly involving SERT and a member of another solute carrier family, which strongly influences the subcellular distribution of SERT and the reuptake of 5-HT.


Sign in / Sign up

Export Citation Format

Share Document