scholarly journals Triggering of Eryptosis, the Suicidal Erythrocyte Death by Mammalian Target of Rapamycin (mTOR) inhibitor Temsirolimus

2017 ◽  
Vol 42 (4) ◽  
pp. 1575-1591 ◽  
Author(s):  
Abdulla Al Mamun Bhuyan ◽  
Hang Cao ◽  
Florian Lang

Background/Aims: The mammalian target of rapamycin (mTOR) inhibitor temsirolimus is utilized for the treatment of malignancy. Temsirolimus is at least in part effective by triggering suicidal tumor cell death. The most common side effect of temsirolimus treatment is anemia. At least in theory, the anemia following temsirolimus treatment could result from stimulation of eryptosis, the suicidal erythrocyte death. Hallmarks of eryptosis include cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the orchestration of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, as well as activation of staurosporine and chelerythrine sensitive protein kinase C, SB203580 sensitive p38 kinase, D4476 sensitive casein kinase 1, and zVAD sensitive caspases. The purpose of the present study was to test whether temsirolimus influences eryptosis and, if so, to shed light on the signaling involved. Methods: Flow cytometry was employed to estimate cell volume from forward scatter, phosphatidylserine exposure at the cell surface from annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) abundance from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was determined from hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to temsirolimus (5 – 20 µg/ml) significantly decreased forward scatter and significantly increased the percentage of annexin-V-binding cells. Temsirolimus significantly increased Fluo3-fluorescence, DCFDA fluorescence and ceramide abundance at the erythrocyte surface. The effect of temsirolimus on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+ and by addition of staurosporine (1 µM) or chelerythrine (10 µM) but not significantly modified by addition of SB203580 (2 µM), D4476 (10 µM), or zVAD (10 µM). Chelerythrine (10 µM) further significantly blunted the effect of temsirolimus on DCFDA fluorescence but not ceramide formation. Removal of extracellular Ca2+ had no effect on temsirolimus induced ROS formation or ceramide abundance. Conclusions: Temsirolimus triggers eryptosis with cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress, ceramide and activation of staurosporine/Chelerythrine sensitive kinase(s).

2016 ◽  
Vol 39 (4) ◽  
pp. 1638-1647 ◽  
Author(s):  
Morena Mischitelli ◽  
Mohamed Jemaà ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The bis-indole alkaloid Fascaplysin is effective against malignancy, an effect at least partially due to stimulation of tumor cell apoptosis. Similar to apoptosis of nucleated cells, erythrocytes could enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether Fascaplysin induces eryptosis and, if so, to shed light on the cellular mechanisms involved. Methods: Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified from the hemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to Fascaplysin (≥ 5 µM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, and significantly increased Fluo3-fluorescence, DCFDA fluorescence as well as ceramide abundance. The effect of Fascaplysin on annexin-V-binding and forward scatter was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Fascaplysin triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, oxidative stress and ceramide.


2018 ◽  
Vol 50 (6) ◽  
pp. 2283-2295 ◽  
Author(s):  
Madeline Fink ◽  
Abdulla Al Mamun Bhuyan ◽  
Nefeli Zacharopoulou ◽  
Florian Lang

Background/Aims: The sesquiterpene lactone Costunolide is effective against various disorders including inflammation and malignancy. The substance is effective in part by triggering suicidal death or apoptosis of tumor cells. Mechanisms involved include altered function of transcription factors and mitochondria. Erythrocytes lack nuclei and mitochondria but are – in analogy to apoptosis of nucleated cells – able to enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether Costunolide induces eryptosis and, if so, to shed light on the mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, reactive oxygen species (ROS) formation from 2’,7’-dichlorodihydrofluorescein (DCF)-dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to Costunolide (15 µg/ml) significantly enhanced the percentage of annexin-V-binding cells, significantly decreased forward scatter and significantly increased Fluo3-fluorescence, DCF-fluorescence, and ceramide abundance. The effect of Costunolide on annexin-V-binding was significantly blunted by removal of extracellular Ca2+. Conclusion: Costunolide triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry and paralleled by oxidative stress and ceramide formation.


2015 ◽  
Vol 37 (3) ◽  
pp. 1018-1028 ◽  
Author(s):  
Kousi Alzoubi ◽  
Jasmin Egler ◽  
Majed Abed ◽  
Florian Lang

Background/Aims: The antiinflammatory, antimicrobial and anticancer drug auranofin has previously been shown to trigger apoptosis, the suicidal death of nucleated cells. Side effects of the drug include anaemia. At least in theory the anaemia could result from stimulation of suicidal death of erythrocytes or eryptosis, which involves cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Methods: Stimulators of eryptosis include oxidative stress and increase of cytosolic Ca2+-activity ([Ca2+]i). In the present study, phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, hemolysis from hemoglobin release, reactive oxygen species (ROS) from 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, and [Ca2+]i from Fluo3-fluorescence. Results: A 24 hours exposure of human erythrocytes to auranofin (≥5 µg/ml) significantly increased the percentage of annexin-V-binding cells (from 2.2 ± 0.5 to 17.4 ± 1.5%), significantly decreased forward scatter and significantly enhanced ROS. At higher concentrations (10 µg/ml) auranofin triggered slight hemolysis (from 2.1 ± 0.2 to 3.2 ± 0.3%). Conclusions: Auranofin stimulates cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least partially due to induction of oxidative stress.


2015 ◽  
Vol 37 (4) ◽  
pp. 1537-1546 ◽  
Author(s):  
Ghada Bouguerra ◽  
Rosi Bissinger ◽  
Salem Abbès ◽  
Florian Lang

Background/Aims: The aldose reductase inhibitor zopolrestat has been shown to either decrease or increase apoptosis, the suicidal death of nucleated cells. Erythrocytes may similarly enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include oxidative stress, Ca2+ entry with increase of cytosolic Ca2+ activity ([Ca2+]i), and ceramide formation. The present study explored, whether and how zopolrestat induces eryptosis. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin V binding, cell volume from forward scatter, oxidative stress from DCFDA dependent fluorescence, [Ca2+]i from Fluo3-fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to zopolrestat (≥ 150 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter (≥ 125 µg/ml), significantly increased Fluo3-fluorescence (200 µg/ml), significantly increased ceramide abundance (150 µg/ml), but did not significantly modify DCFDA fluorescence. The effect of zopolrestat on annexin-V-binding was significantly blunted, but not abolished by removal of extracellular Ca2+. Conclusions: Exposure of human erythrocytes to zopolrestat triggers cell shrinkage and cell membrane scrambling, an effect in part due to Ca2+ entry and ceramide.


2016 ◽  
Vol 39 (3) ◽  
pp. 908-918 ◽  
Author(s):  
Abdulla Al Mamun Bhuyan ◽  
Elena Signoretto ◽  
Florian Lang

Background/Aims: Psammaplin A, a natural product isolated from marine sponges, triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy. In analogy to apoptosis of nucleated tumor cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Cellular mechanisms stimulating eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether Psammaplin A induces eryptosis and to possibly shed some light on the underlying mechanisms. Methods: Phosphatidylserine exposing erythrocytes were identified utilizing annexin-V-binding, cell volume was estimated from forward scatter, [Ca2+]i determined utilizing Fluo3-fluorescence, the abundance of reactive oxygen species (ROS) quantified with DCFDA dependent fluorescence, and ceramide abundance at the erythrocyte surface detected with specific antibodies. Results: A 48 hours exposure of human erythrocytes to Psammaplin A (2-8 µg/ml) significantly decreased forward scatter and significantly increased the percentage of annexin-V-binding cells. Psammaplin A significantly increased Fluo3-fluorescence, the effect of Psammaplin A on annexin-V-binding and forward scatter was, however, not significantly blunted by removal of extracellular Ca2+. Psammaplin A significantly increased DCFDA fluorescence and ceramide abundance. Conclusions: Psammaplin A triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by increase of [Ca2+]i, induction of oxidative stress and enhanced appearance of ceramide.


2016 ◽  
Vol 39 (4) ◽  
pp. 1626-1637 ◽  
Author(s):  
Morena Mischitelli ◽  
Mohamed Jemaà ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The bioactive steroid sapogenin diosgenin is considered for a wide variety of applications including treatment of malignancy. The substance counteracts tumor growth in part by stimulating apoptosis of tumor cells. Similar to apoptosis of nucleated cells, erythrocytes may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study explored, whether diosgenin induces eryptosis and, if so, to decipher cellular mechanisms involved. Methods: Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was quantified by determination of haemoglobin concentration in the supernatant. Results: A 48 hours exposure of human erythrocytes to diosgenin significantly increased the percentage of annexin-V-binding cells (≥ 5 µM), significantly decreased forward scatter (15 µM), significantly increased Fluo3-fluorescence (≥ 10 µM), significantly increased DCF fluorescence (15 µM), significantly increased ceramide abundance (15 µM) and significantly increased hemolysis (15 µM). The effect of diosgenin (15 µM) on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Diosgenin stimulates eryptosis with erythrocyte shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by and at least in part due to Ca2+ entry, oxidative stress and ceramide.


2017 ◽  
Vol 41 (2) ◽  
pp. 519-529 ◽  
Author(s):  
Morena Mischitelli ◽  
Mohamed Jemaàa ◽  
MyriamFezai Fezai ◽  
Mustafa Almasry ◽  
Florian Lang ◽  
...  

Background/Aims: The atypical retinoid E23-(40-hydroxyl-30-adamantylbiphenyl-4-yl) acrylic acid (ST1926, adarotene) is used in the treatment of malignancy. The effect of ST1926 is at least in part due to stimulation of apoptosis. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal death of erythrocytes. Hallmarks of eryptosis include cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the stimulation of eryptosis includes increase of cytosolic Ca2+ activity [Ca2+]<Sub>i</Sub>, oxidative stress and ceramide. The present study explored, whether adarotene induces eryptosis and, if so, to test for the involvement of Ca2+ entry, oxidative stress and ceramide. Methods: Flow cytometry was employed to estimate phosphatidylserine exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca2+]<Sub>i</Sub> from Fluo3-fluorescence, reactive oxygen species (ROS) formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to adarotene (9 µM) significantly increased the percentage of annexin-V-binding cells, an effect paralleled by significant decrease of forward scatter, as well as significant increase of Fluo3-fluorescence, DCFDA fluorescence, and ceramide abundance. The effect of adarotene (9 µM) on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Adarotene stimulates phospholipid scrambling of the erythrocyte cell membrane, an effect paralleled by and at least in part due to Ca2+ entry, oxidative stress and ceramide.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 91-103 ◽  
Author(s):  
Morena Mischitelli ◽  
Mohamed Jemaà ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
Florian Lang

Background/Aims: The natural anthraquinone derivative emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a component of several Chinese medicinal herbal preparations utilized for more than 2000 years. The substance has been used against diverse disorders including malignancy, inflammation and microbial infection. The substance is effective in part by triggering suicidal death or apoptosis. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal erythrocyte death or eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling involved in the triggering of eryptosis include increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress and ceramide. The present study aimed to test, whether emodin induces eryptosis and, if so, to elucidate underlying cellular mechanisms. Methods: Phosphatidylserine abundance at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: Exposure of human erythrocytes for 48 hours to emodin (≥ 10 µM) significantly increased the percentage of annexin-V-binding cells, and at higher concentrations (≥ 50 µM) significantly increased forward scatter. Emodin significantly increased Fluo3-fluorescence (≥ 10 µM), DCFDA fluorescence (75 µM) and ceramide abundance (75 µM). The effect of emodin on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+. Conclusions: Emodin triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to stimulation of Ca2+ entry and paralleled by oxidative stress and ceramide appearance at the erythroctye surface.


2016 ◽  
Vol 40 (5) ◽  
pp. 1129-1140 ◽  
Author(s):  
Abdulla Al Mamun Bhuyan ◽  
Elena Signoretto ◽  
Rosi Bissinger ◽  
Florian Lang

Background/Aims: The anaplastic lymphoma kinase (ALK) inhibitor ceritinib is utilized for the treatment of ALK positive non-small cell lung carcinoma. Side effects of the drug include decrease of blood hemoglobin concentration. Possible causes of anemia include stimulation of suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Signaling of eryptosis includes increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, staurosporine sensitive protein kinase C, SB203580 sensitive p38 kinase, D4476 sensitive casein kinase 1, and zVAD sensitive caspases. The present study explored, whether ceritinib induces eryptosis and, if so, to shed light on the cellular mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to ceritinib (1 µg/ml) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, but did not significantly modify DCFDA fluorescence or ceramide abundance. The effect of ceritinib on annexin-V-binding was significantly blunted but not abolished by removal of extracellular Ca2+, by the kinase inhibitors staurosporine (1 µM), SB203580 (2 µM) and D4476 (10 µM), as well as by caspase inhibitor zVAD (10 µM). Conclusions: Ceritinib triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to Ca2+ entry, as well as activation of kinases and Caspases.


2016 ◽  
Vol 40 (3-4) ◽  
pp. 597-607 ◽  
Author(s):  
Mohamed Jemaà ◽  
Morena Mischitelli ◽  
Myriam Fezai ◽  
Mustafa Almasry ◽  
Caterina Faggio ◽  
...  

Background/Aims: The CDC25B inhibitor NSC-95397 triggers apoptosis of tumor cells and is thus considered for the treatment of malignancy. The substance is effective in part by modification of gene expression. Similar to apoptosis of nucleated cells erythrocytes may undergo eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Eryptosis may be triggered by increase of cytosolic Ca2+ activity ([Ca2+]i), oxidative stress, ceramide, as well as activation of protein kinases. The present study explored, whether NSC-95397 induces eryptosis and, if so, to shed some light on the mechanisms involved. Methods: Phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, [Ca2+]i from Fluo3-fluorescence, ROS formation from DCFDA dependent fluorescence, and ceramide abundance utilizing specific antibodies. Results: A 48 hours exposure of human erythrocytes to NSC-95397 significantly increased the percentage of annexin-V-binding cells (≥ 1 µM), significantly decreased forward scatter (≥ 2.5 µM), and significantly increased Fluo3-fluorescence (≥ 1 µM), DCFDA fluorescence (5 µM) and ceramide abundance (≥ 5 µM). The effect of NSC-95397 (5 µM) on annexin-V-binding was slightly, but significantly blunted by removal of extracellular Ca2+ and by addition of the protein kinase C inhibitor staurosporine (1 µM). Conclusions: NSC-95397 triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part requiring entry of Ca2+ and activation of staurosporine sensitive kinase(s).


Sign in / Sign up

Export Citation Format

Share Document