Somatic Mosaicism in Fanconi Anemia: Molecular Basis and Clinical Significance

1997 ◽  
Vol 5 (3) ◽  
pp. 137-148 ◽  
Author(s):  
J.R. Lo Ten Foe ◽  
M.L. *<b Kwee ◽  
M.A. Rooimans ◽  
A.B. Oostra ◽  
A.J.R. Veerman ◽  
...  
Blood ◽  
2005 ◽  
Vol 105 (3) ◽  
pp. 1329-1336 ◽  
Author(s):  
Jean Soulier ◽  
Thierry Leblanc ◽  
Jérôme Larghero ◽  
Hélène Dastot ◽  
Akiko Shimamura ◽  
...  

AbstractFanconi anemia (FA) is characterized by congenital abnormalities, bone marrow failure, chromosome fragility, and cancer susceptibility. Eight FA-associated genes have been identified so far, the products of which function in the FA/BRCA pathway. A key event in the pathway is the monoubiquitination of the FANCD2 protein, which depends on a multiprotein FA core complex. In a number of patients, spontaneous genetic reversion can correct FA mutations, leading to somatic mosaicism. We analyzed the FA/BRCA pathway in 53 FA patients by FANCD2 immunoblots and chromosome breakage tests. Strikingly, FANCD2 monoubiquitination was detected in peripheral blood lymphocytes (PBLs) in 8 (15%) patients. FA reversion was further shown in these patients by comparison of primary fibro-blasts and PBLs. Reversion was associated with higher blood counts and clinical stability or improvement. Once constitutional FANCD2 patterns were determined, patients could be classified based on the level of FA/BRCA pathway disruption, as “FA core” (upstream inactivation; n = 47, 89%), FA-D2 (n = 4, 8%), and an unidentified downstream group (n = 2, 4%). FA-D2 and unidentified group patients were therefore relatively common, and they had more severe congenital phenotypes. These results show that specific analysis of the FA/BRCA pathway, combined with clinical and chromosome breakage data, allows a comprehensive characterization of FA patients.


2015 ◽  
pp. 179-190
Author(s):  
Mark A. Wainberg ◽  
Marilyn Smith ◽  
Julio S. G. Montaner ◽  
Kazushige Nagai ◽  
Avrum Spira ◽  
...  

1998 ◽  
Vol 13 (4) ◽  
pp. 867-874 ◽  
Author(s):  
S. Waldegger ◽  
S. Steuer ◽  
T. Risler ◽  
A. Heidland ◽  
G. Capasso ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1056-1056
Author(s):  
Fernando O. Pinto ◽  
Thierry Leblanc ◽  
Gwenaelle Le Roux ◽  
Helene Dastot ◽  
Moema Santos ◽  
...  

Abstract Early diagnosis of Fanconi Anemia (FA) in patients with bone marrow failure is critical for optimal clinical management. However, the remarkably high clinical variability and the potential emergence of revertant hematopoietic cells (somatic mosaicism) can obscure and delay the diagnosis of FA. Here we addressed FA diagnosis in a prospective series of adult and pediatric patients who presented with bone marrow failure without clear overall clinical picture of FA. Sixty-six patients were classified into three groups: (1) bone marrow failure likely to be congenital, based on dysmorphic features or a family history [n=18], (2) aplastic anemia likely to be idiopathic [n=32], (3) patients with intermediate clinical features not classified into the former groups [n=16]. Of note, FA patients with typical clinical features were not included in the present study. FA diagnosis was evaluated using chromosome breakage test and FANCD2 immunoblot in PHA-stimulated-PBL. In addition, skin primary fibroblasts were analysed in order to overcome potential hematopoietic FA reversion. For that purpose, and considering that chromosome breakage tests are barely efficient in fibroblasts, we used FANCD2 immunoblot and also developped a new flow cytometry test based on MMC-sensitivity in fibroblasts (to detect downstream FA/BRCA groups). Using these approaches, we detected FA in 4 previously undiagnosed patients: a 35-years old patient from the congenital-like group; a 10-years old patient presenting as an idiopathic aplastic anemia without any FA signs; and two patients from the intermediate group: a 10-years old patient with an isolated thrombocytopenia, and a 50-years old patient presenting with pancytopenia/MDS and complete hematopoietic reversion. Importantly, FA diagnosis was definitely excluded in all other patients. In conclusion, we could identify a few unexpected FA cases in a series of patients with bone marrow failure. Therefore, the comprehensive use of a large set of tests is useful for accurate FA diagnosis. Classical chromosomal breakage tests in PBL appeared to be sufficient to exclude FA in idiopathic aplastic anemia, whereas fibroblast analysis can be necessary to definitely diagnose or exclude FA in other patients.


2001 ◽  
Vol 98 (5) ◽  
pp. 2532-2537 ◽  
Author(s):  
J. J. Gregory ◽  
J. E. Wagner ◽  
P. C. Verlander ◽  
O. Levran ◽  
S. D. Batish ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document