scholarly journals Next-Generation Sequencing Technologies in Blood Group Typing

2019 ◽  
Vol 47 (1) ◽  
pp. 4-13 ◽  
Author(s):  
Daniel Fürst ◽  
Chrysanthi Tsamadou ◽  
Christine Neuchel ◽  
Hubert Schrezenmeier ◽  
Joannis Mytilineos ◽  
...  

Sequencing of the human genome has led to the definition of the genes for most of the relevant blood group systems, and the polymorphisms responsible for most of the clinically relevant blood group antigens are characterized. Molecular blood group typing is used in situations where erythrocytes are not available or where serological testing was inconclusive or not possible due to the lack of antisera. Also, molecular testing may be more cost-effective in certain situations. Molecular typing approaches are mostly based on either PCR with specific primers, DNA hybridization, or DNA sequencing. Particularly the transition of sequencing techniques from Sanger-based sequencing to next-generation sequencing (NGS) technologies has led to exciting new possibilities in blood group genotyping. We describe briefly the currently available NGS platforms and their specifications, depict the genetic background of blood group polymorphisms, and discuss applications for NGS approaches in immunohematology. As an example, we delineate a protocol for large-scale donor blood group screening established and in use at our institution. Furthermore, we discuss technical challenges and limitations as well as the prospect for future developments, including long-read sequencing technologies.

2020 ◽  
Vol 79 (2) ◽  
pp. 105-113
Author(s):  
Abdul Bari Muneera Parveen ◽  
Divya Lakshmanan ◽  
Modhumita Ghosh Dasgupta

The advent of next-generation sequencing has facilitated large-scale discovery and mapping of genomic variants for high-throughput genotyping. Several research groups working in tree species are presently employing next generation sequencing (NGS) platforms for marker discovery, since it is a cost effective and time saving strategy. However, most trees lack a chromosome level genome map and validation of variants for downstream application becomes obligatory. The cost associated with identifying potential variants from the enormous amount of sequence data is a major limitation. In the present study, high resolution melting (HRM) analysis was optimized for rapid validation of single nucleotide polymorphisms (SNPs), insertions or deletions (InDels) and simple sequence repeats (SSRs) predicted from exome sequencing of parents and hybrids of Eucalyptus tereticornis Sm. ? Eucalyptus grandis Hill ex Maiden generated from controlled hybridization. The cost per data point was less than 0.5 USD, providing great flexibility in terms of cost and sensitivity, when compared to other validation methods. The sensitivity of this technology in variant detection can be extended to other applications including Bar-HRM for species authentication and TILLING for detection of mutants.


Weed Science ◽  
2009 ◽  
Vol 57 (5) ◽  
pp. 463-469 ◽  
Author(s):  
Ryan M. Lee ◽  
Jyothi Thimmapuram ◽  
Kate A. Thinglum ◽  
George Gong ◽  
Alvaro G. Hernandez ◽  
...  

Recent advances in sequencing technologies (next-generation sequencing) offer dramatically increased sequencing throughput at a lower cost than traditional Sanger sequencing. This technology is changing genomics research by allowing large scale sequencing experiments in nonmodel systems. Waterhemp is an important weed in the midwestern United States with characteristics that makes it an interesting ecological model. However, very few genomic resources are available for this species. One half of a 70 by 75 picotiter plate of 454-pyrosequencing was performed on total DNA isolated from waterhemp, generating 158,015 reads of an average length of 271 bp, or a total of nearly 43 Mbp of sequence. Included in this sequence was a nearly complete sequence of the chloroplast genome, sequences of several important herbicide resistance genes, leads for simple sequence repeat (SSR) markers, and a sampling of the repeated elements (e.g., transposons) present in this species. Here we present the waterhemp genomic data gleaned from this sequencing experiment and illustrate the value of next-generation sequencing technology to weed science research.


Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 168-176 ◽  
Author(s):  
Jill M. Johnsen

Abstract Blood types (blood group antigens) are heritable polymorphic antigenic molecules on the surface of blood cells. These were amongst the first human Mendelian traits identified, and the genetic basis of nearly all of the hundreds of blood types is known. Clinical laboratory methods have proven useful to identify selected blood group gene variants, and use of genetic blood type information is becoming widespread. However, the breadth and complexity of clinically relevant blood group genetic variation poses challenges. With recent advances in next-generation sequencing technologies, a more comprehensive DNA sequence-based genetic blood typing approach is now feasible. This chapter introduces the practitioner to high-resolution genetic blood typing beginning with an overview of the genetics of blood group antigens, the clinical problem of allosensitization, current blood type testing methods, and then discussion of next-generation sequencing and its application to the problem of genetic blood typing.


2021 ◽  
Vol 9 (4) ◽  
pp. 507-516
Author(s):  
Sunanya Das ◽  
◽  
Rukmini Mishra ◽  

With the ever-increasing population, the plant cover is decreasing at an alarming rate. The medicinal plants are most affected by this because they are present in the last tier of cultivation. Let it be pharmaceutical companies or people using it for herbalism, medicinal plants have been exploited without getting a chance to flourish in their natural environment. Modern biotechnology acts as a bridge between the cultivation and utilization of medicinal plants. Next Generation Sequencing (NGS) technology which is a decade old but emerging field helps to unveil the importance of medicinal plants. Thus, it paves the way for sustenance of medicinal plants by molecular breeding, micropropagation, large-scale tissue culture, and other methods to conserve the plants with great medicinal value. Various NGS technologies can be found in the market like Ilumina, PacBio, Ion Torrent, and others. The present review will summarize the NGS technologies and their potential use to study the genomes, transcriptome, epigenome, and interactome of medicinal plants towards the identification of bioactive compounds.


2018 ◽  
Vol 72 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Perry Maxwell ◽  
Seán O Hynes ◽  
Marc Fuchs ◽  
Stephanie Craig ◽  
Claire McGready ◽  
...  

AimsAlthough there have been excellent reports in the literature of validating next-generation sequencing, comparisons between two systems are not often published due to cost and time. We set out to establish that targetable mutations could be reliably detected with different gene panels and different chemistries using a common bioinformatics pipeline for meaningful comparisons to be made.MethodsAfter running selected formalin-fixed, paraffin-embedded samples through QPCR, Sanger sequencing and the 50 gene hotspot v2 panel from Life Technologies to determine standard-of-care variants, we compared the Oncomine panel from Life Technologies performed on a Personal Genome Machine (PGM) and the eight-gene actionable panel from Qiagen performed on a MiSeq platform. We used a common bioinformatics program following the creation of respective VCF files.ResultsBoth panels were accurate to above 90%, the actionable panel workflow was easier to perform but the lowest effective starting DNA load was obtained on the Oncomine workflow at 4 ng. Such minimal DNA can help with samples where there is limited material such as those for lung cancer molecular studies. We also discuss gene panel content and propose that increasing the gene profile of a panel will not benefit clinical laboratories where standard-of-care testing is all that is required.ConclusionsOnce recognised, it may be cost-effective for such laboratories to begin validation with an appropriate bioinformatics pipeline for targeted multigene hotspot molecular testing.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


2013 ◽  
Vol 2 (2) ◽  
pp. 104-111 ◽  
Author(s):  
Joakim Crona ◽  
Alberto Delgado Verdugo ◽  
Dan Granberg ◽  
Staffan Welin ◽  
Peter Stålberg ◽  
...  

BackgroundRecent findings have shown that up to 60% of pheochromocytomas (PCCs) and paragangliomas (PGLs) are caused by germline or somatic mutations in one of the 11 hitherto known susceptibility genes: SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, HIF2A (EPAS1), RET, NF1, TMEM127 and MAX. This list of genes is constantly growing and the 11 genes together consist of 144 exons. A genetic screening test is extensively time consuming and expensive. Hence, we introduce next-generation sequencing (NGS) as a time-efficient and cost-effective alternative.MethodsTumour lesions from three patients with apparently sporadic PCC were subjected to whole exome sequencing utilizing Agilent Sureselect target enrichment system and Illumina Hi seq platform. Bioinformatics analysis was performed in-house using commercially available software. Variants in PCC and PGL susceptibility genes were identified.ResultsWe have identified 16 unique genetic variants in PCC susceptibility loci in three different PCC, spending less than a 30-min hands-on, in-house time. Two patients had one unique variant each that was classified as probably and possibly pathogenic: NF1 Arg304Ter and RET Tyr791Phe. The RET variant was verified by Sanger sequencing.ConclusionsNGS can serve as a fast and cost-effective method in the clinical genetic screening of PCC. The bioinformatics analysis may be performed without expert skills. We identified process optimization, characterization of unknown variants and determination of additive effects of multiple variants as key issues to be addressed by future studies.


Sign in / Sign up

Export Citation Format

Share Document