scholarly journals The “Flying Intervention Team”: A Novel Stroke Care Concept for Rural Areas

2021 ◽  
pp. 1-8
Author(s):  
Gordian Jan Hubert ◽  
Frank Kraus ◽  
Christian Maegerlein ◽  
Sabine Platen ◽  
Benjamin Friedrich ◽  
...  

<b><i>Background:</i></b> Endovascular treatment of large vessel occlusion in acute ischemic stroke patients is difficult to establish in remote areas, and time dependency of treatment effect increases the urge to develop health care concepts for this population. <b><i>Summary:</i></b> Current strategies include direct transportation of patients to a comprehensive stroke center (CSC) (“mothership model”) or transportation to the nearest primary stroke center (PSC) and secondary transfer to the CSC (“drip-and-ship model”). Both have disadvantages. We propose the model “flying intervention team.” Patients will be transported to the nearest PSC; if telemedically identified as eligible for thrombectomy, an intervention team will be acutely transported via helicopter to the PSC and endovascular treatment will be performed on site. Patients stay at the PSC for further stroke unit care. This model was implemented at a telestroke network in Germany. Fifteen remote hospitals participated in the project, covering 14,000 km<sup>2</sup> and a population of 2 million. All have well established telemedically supported stroke units, an angiography suite, and a helicopter pad. Processes were defined individually for each hospital and training sessions were implemented for all stroke teams. An exclusive project helicopter was installed to be available from 8 a.m. to 10 p.m. during 26 weeks per year. <b><i>Key Messages:</i></b> The model of the flying intervention team is likely to reduce time delays since processes will be performed in parallel, rather than consecutively, and since it is quicker to move a medical team rather than a patient. This project is currently under evaluation (clinicaltrials NCT04270513).

2021 ◽  
pp. 028418512110068
Author(s):  
Yu Hang ◽  
Zhen Yu Jia ◽  
Lin Bo Zhao ◽  
Yue Zhou Cao ◽  
Huang Huang ◽  
...  

Background Patients with acute ischemic stroke (AIS) caused by large vessel occlusion (LVO) were usually transferred from a primary stroke center (PSC) to a comprehensive stroke center (CSC) for endovascular treatment (drip-and-ship [DS]), while driving the doctor from a CSC to a PSC to perform a procedure is an alternative strategy (drip-and-drive [DD]). Purpose To compare the efficacy and prognosis of the two strategies. Material and Methods From February 2017 to June 2019, 62 patients with LVO received endovascular treatment via the DS and DD models and were retrospectively analyzed from the stroke alliance based on our CSC. Primary endpoint was door-to-reperfusion (DTR) time. Secondary endpoints included puncture-to-recanalization (PTR) time, modified Thrombolysis in Cerebral Infarction (mTICI) rates at the end of the procedure, and modified Rankin Scale (mRS) at 90 days. Results Forty-one patients received the DS strategy and 21 patients received the DD strategy. The DTR time was significantly longer in the DS group compared to the DD group (315.5 ± 83.8 min vs. 248.6 ± 80.0 min; P < 0.05), and PTR time was shorter (77.2 ± 35.9 min vs. 113.7 ± 69.7 min; P = 0.033) compared with the DD group. Successful recanalization (mTICI 2b/3) was achieved in 89% (36/41) of patients in the DS group and 86% (18/21) in the DD group ( P = 1.000). Favorable functional outcomes (mRS 0–2) were observed in 49% (20/41) of patients in the DS group and 71% (15/21) in the DD group at 90 days ( P = 0.089). Conclusion Compared with the DS strategy, the DD strategy showed more effective and a trend of better clinical outcomes for AIS patients with LVO.


2021 ◽  
pp. neurintsurg-2020-017050
Author(s):  
Laura C C van Meenen ◽  
Nerea Arrarte Terreros ◽  
Adrien E Groot ◽  
Manon Kappelhof ◽  
Ludo F M Beenen ◽  
...  

BackgroundPatients with a stroke who are transferred to a comprehensive stroke center for endovascular treatment (EVT) often undergo repeated neuroimaging prior to EVT.ObjectiveTo evaluate the yield of repeating imaging and its effect on treatment times.MethodsWe included adult patients with a large vessel occlusion (LVO) stroke who were referred to our hospital for EVT by primary stroke centers (2016–2019). We excluded patients who underwent repeated imaging because primary imaging was unavailable, incomplete, or of insufficient quality. Outcomes included treatment times and repeated imaging findings.ResultsOf 677 transferred LVO stroke, 551 were included. Imaging was repeated in 165/551 patients (30%), mostly because of clinical improvement (86/165 (52%)) or deterioration (40/165 (24%)). Patients who underwent repeated imaging had higher door-to-groin-times than patients without repeated imaging (median 43 vs 27 min, adjusted time difference: 20 min, 95% CI 15 to 25). Among patients who underwent repeated imaging because of clinical improvement, the LVO had resolved in 50/86 (58%). In patients with clinical deterioration, repeated imaging led to refrainment from EVT in 3/40 (8%). No symptomatic intracranial hemorrhages (sICH) were identified. Ultimately, 75/165 (45%) of patients with repeated imaging underwent EVT compared with 326/386 (84%) of patients without repeated imaging (p<0.01).ConclusionsNeuroimaging was repeated in 30% of patients with an LVO stroke and resulted in a median treatment delay of 20 minutes. In patients with clinical deterioration, no sICH were detected and repeated imaging rarely changed the indication for EVT. However, in more than half of patients with clinical improvement, the LVO had resolved, resulting in refrainment from EVT.


2021 ◽  
pp. neurintsurg-2021-017365
Author(s):  
Mais Al-Kawaz ◽  
Christopher Primiani ◽  
Victor Urrutia ◽  
Ferdinand Hui

BackgroundCurrent efforts to reduce door to groin puncture time (DGPT) aim to optimize clinical outcomes in stroke patients with large vessel occlusions (LVOs). The RapidAI mobile application (Rapid Mobile App) provides quick access to perfusion and vessel imaging in patients with LVOs. We hypothesize that utilization of RapidAI mobile application can significantly reduce treatment times in stroke care by accelerating the process of mobilizing stroke clinicians and interventionalists.MethodsWe analyzed patients presenting with LVOs between June 2019 and October 2020. Thirty-one patients were treated between June 2019 and March 2020 (pre-app group). Thirty-three patients presented between March 2020 and October 2020 (post-app group). Mann–Whitney U test and Kruskal–Wallis tests were used to examine variables that are not normally distributed. In a secondary analysis we analyzed interhospital time metrics between primary stroke centers and our comprehensive stroke center.ResultsBaseline demographic and vascular risk factors were similar in both groups. Use of Rapid Mobile App resulted in 33 min reduction in DGPT (P=0.02), 35 min reduction in door to first pass time (P=0.02), and 37 min reduction in door to recanalization time (P=0.02) in univariate analyses when compared with patients treated pre-app. In a multiple linear regression model, utilization of Rapid Mobile App significantly predicted shorter DGPT (P=0.002). In an adjusted model, National Institutes of Health Stroke Scale (NIHSS) 24 hours after procedure and at discharge were significantly lower in the post-app group (P=0.03). Time of transfer between primary and comprehensive stroke center was comparable in both groups (P=0.26).ConclusionIn patients with LVOs, the implementation of the RapidAI mobile application was independently associated with reductions in intrahospital treatment times.


Stroke ◽  
2021 ◽  
Author(s):  
Laura C.C. van Meenen ◽  
Maritta N. van Stigt ◽  
Arjen Siegers ◽  
Martin D. Smeekes ◽  
Joffry A.F. van Grondelle ◽  
...  

A reliable and fast instrument for prehospital detection of large vessel occlusion (LVO) stroke would be a game-changer in stroke care, because it would enable direct transportation of LVO stroke patients to the nearest comprehensive stroke center for endovascular treatment. This strategy would substantially improve treatment times and thus clinical outcomes of patients. Here, we outline our view on the requirements of an effective prehospital LVO detection method, namely: high diagnostic accuracy; fast application and interpretation; user-friendliness; compactness; and low costs. We argue that existing methods for prehospital LVO detection, including clinical scales, mobile stroke units and transcranial Doppler, do not fulfill all criteria, hindering broad implementation of these methods. Instead, electroencephalography may be suitable for prehospital LVO detection since in-hospital studies have shown that quantification of hypoxia-induced changes in the electroencephalography signal have good diagnostic accuracy for LVO stroke. Although performing electroencephalography measurements in the prehospital setting comes with challenges, solutions for fast and simple application of this method are available. Currently, the feasibility and diagnostic accuracy of electroencephalography in the prehospital setting are being investigated in clinical trials.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Laura Suhan ◽  
Spozhmy Panezai ◽  
Jaskiran Brar ◽  
Audrey Z Arango ◽  
Anna Pullicino ◽  
...  

Background: Various strategies have been implemented to reduce acute stroke treatment times. A unique code process pathway was designed at our hospital specifically to be activated by the stroke team for the purpose of rapidly assembling the Neurointerventional team. Methods: Code Neurointervention (NI), was designed and tested from January 2014 to April 2014 for all the patients who presented with ischemic strokes to our community based, university affiliated comprehensive stroke center. We retrospectively analyzed all patients who had Code NI called from May 1, 2014 to April 30, 2015 and compared them to patients who underwent acute endovascular treatment the prior year (Non Code NI). The following parameters were compared: decision to recanalization and door to recanalization times. Further analysis was done to compare patients presenting during business hours (Monday-Friday 8am-5pm) and off hours using GraphPad QuickCalcs Web site. Results: There were 28 Code NI; 14 were called during work hours and 14 during off hours. The previous year 25 patients underwent acute endovascular intervention; 12 during work hours and 13 during off hours. Mean decision to recanalization time was 106 (Code NI) vs 115 minutes (Non Code NI) (p<0.0.6) during work hours and 154 (Code NI) vs 139 minutes (Non Code NI) (p<0.37) during off hours. Mean door to recanalization time was 169 (Code NI) vs 173 minutes (Non Code NI) (p<0.85) during work hours and 252 (Code NI) vs 243minutes (Non Code NI) (p< 0.75) during off hours. Subset analysis of time parameters for patients in Code NI group showed mean decision to recanalization times of 106 minutes during work hours vs 154 minutes off work hours (p<0.004). Mean door to recanalization times were 169 minutes vs 251 minutes (p<0.0003), respectively. Conclusion: Institution of Code NI significantly improved intervention time parameters during work hours as compared to off hours. Rapid assembly of the neurointervention team, rapid availability of imaging and angiography suite likely contribute to these differences. Further initiatives, such as improving neurointervention staff availability during off hours or cross training other staff can further improve acute intervention time parameters.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Ameer E Hassan ◽  
Victor M Ringheanu ◽  
Raul G Nogueira ◽  
Laurie Preston ◽  
Adnan I Qureshi ◽  
...  

Introduction: Endovascular treatment (EVT) is a widely proven method to treat patients diagnosed with intracranial large vessel occlusion. In order to ensure patients safety prior to and during EVT, preprocedural intubation has been adopted in many centers as a means for airway protection and immobilization. However, the correlation between site of vessel occlusion, need for intubation, and outcomes, has not yet been established. Methods: Through the utilization of a prospectively collected database at a comprehensive stroke center between 2012-2020, demographics, co-morbid conditions, intracerebral hemorrhage, mortality rate, and functional independence outcomes were examined. The outcomes and sites of occlusion between patients receiving mechanical thrombectomy (MT) treated while intubated versus those treated under conscious sedation (CS) were compared. Results: Out of 625 patients treated with MT, a total of 218 (34.9%) were treated while intubated (average age 70.3 ± 13.7, 37.2% women), and 407 (65.1%) were treated while under CS (average age 70.3 ± 13.7, 47.7% women); see Table 1 for baseline characteristics and outcomes. A higher number of patients requiring intubation had an occlusion in the basilar versus those only requiring CS. No differences were noted in regard to the proportion of patients receiving intubation or CS when treated for RMCA, LMCA, or internal carotid artery occlusions. Conclusion: Intubation + MT was associated with significantly worsened outcomes in regard to recanalization rates, functional outcome, and mortality. In anterior circulation strokes, intubation in RMCA patients were found to have poorer clinical outcome. Higher rates of intubation were also found to be needed in patients with basilar occlusions. Further research is required to determine whether site of occlusion dictates the need for intubation, and whether intubation allows for favorable outcome between R and LMCA occlusions.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Jessica Kobsa ◽  
Ayush Prasad ◽  
Alexandria Soto ◽  
Sreeja Kodali ◽  
Cindy Khanh Nguyen ◽  
...  

Introduction: Decreases in blood pressure (BP) during thrombectomy are associated with infarct progression and worse outcomes. Many patients present first to a primary stroke center (PSC) and are later transferred to a comprehensive stroke center (CSC) to undergo thrombectomy. During this period, important BP variations might occur. We evaluated the association of BP reductions with neurological worsening and functional outcomes. Methods: We prospectively collected hemodynamic, clinical, and radiographic data on consecutive patients with LVO ischemic stroke who were transferred from a PSC for possible thrombectomy between 2018 and 2020. We assessed systolic BP (SBP) and mean arterial pressure (MAP) at five time points: earliest recorded, average pre-PSC, PSC admission, average PSC, and CSC admission. We measured neurologic worsening as a change in NIHSS (ΔNIHSS) from PSC to CSC >3 and functional outcome using the modified Rankin Scale (mRS) at discharge and 90 days. Relationships between variables of interest were evaluated using linear regression. Results: Of 91 patients (mean age 70±16 years, mean NIHSS 12) included, 13 (14%) experienced early neurologic deterioration (ΔNIHSS>3), and 34 (37%) achieved a good outcome at discharge (mRS<3). We found that patients with good outcome had significantly lower SBP at all five assessed time points compared to patients with poor outcome (Figure 1, p<0.05). Percent change in MAP from initial presentation to CSC arrival was independently associated with ΔNIHSS after adjusting for age, sex, and transfer time (p=0.03, β=0.27). Conclusions: Patients with poor outcomes have higher BP throughout the pre-CSC period, possibly reflecting an augmented hypertensive response. Reductions in SBP and MAP before arrival at the CSC are associated with neurologic worsening. These results suggest that BP management strategies in the pre-CSC period to avoid large reductions in BP may improve outcomes in patients affected by LVO stroke.


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Jane Holl ◽  
Andy Cai ◽  
Lauren Ha ◽  
Alin Hulli ◽  
Melina Paan ◽  
...  

Introduction: Given the time-sensitive benefits of acute stroke (AS) treatments, stroke systems of care must balance reducing door-in-door-out (DIDO) time at primary stroke centers (PSCs) with capacity limits at comprehensive stroke centers (CSCs). For example transferring more AS patients earlier in the process (e.g., prior vascular imaging for large vessel occlusion) from PSCs would result in more inappropriate transfers to CSCs that could overburden these centers.We conducted a simulation to estimate the balance between increased AS transfers from PSCs to CSCs and the percent of CSC time on “bypass” (inability to accept transfers to neuro-ICU). Methods: Clinicians from 3 Chicago-area CSCs and 3 affiliated PSCs and the Chicago Emergency Medical Services (EMS) created a PSC DIDO process map. We assumed CSC time on bypass is affected by AS and non-AS admissions from the CSC and from the affiliated PSCs. Input data were obtained fromtheChicago region registry (e.g., # PSC to CSC transfers), peer reviewed literature (US average transfer rate of AS patients to CSCs), EMS (PSC-CSC affiliations), and CSCs (e.g., average bed occupancy rates). CSC size was estimated by #neuro-ICU beds: small (12 beds), medium (23 beds), and large (28 beds). The simulation output was % time of CSC on “bypass”. Results: Table shows % time of CSC on bypass by varying PSC AS transfer rates for each category of CSC size. Larger increases in PSC transfer rates resulted in modest increases in CSC bypass rates, particularly for medium and large CSCs. Validation with data from one CSC showed < 4% overestimate of CSC % time on bypass. Conclusion: CSCs with more beds have efficiencies of scale leading to lower % time on bypass, even with increases in PSC AS transfer rates proportionate to CSC size. This model allows stroke systems of care to compute regional CSCs’ % time on bypass based on actual PSCs’ transfer rates and CSC size.


2019 ◽  
Vol 12 (9) ◽  
pp. 842-847 ◽  
Author(s):  
Stefania Nannoni ◽  
Davide Strambo ◽  
Gaia Sirimarco ◽  
Michael Amiguet ◽  
Peter Vanacker ◽  
...  

Background and purposeThe real-life application of DAWN and DEFUSE-3 trials has been poorly investigated. We aimed to identify the proportion of patients with acute ischemic stroke (AIS) eligible for late endovascular treatment (EVT) in our stroke center based on trial and more liberal selection criteria.MethodsAll consecutive patients in our stroke registry (2003–2017) admitted within 5–23 hours of last proof of good health were selected if they had complete clinical and radiological datasets. We calculated the proportion of patients eligible for late EVT according to trial (DAWN and/or DEFUSE-3) and more liberal clinical/imaging mismatch criteria (including lower admission National Institutes of Health Stroke Scale score and Alberta Stroke Program Early CT Score for core estimation).ResultsOf 1705 patients with AIS admitted to our comprehensive stroke center in the late time window, we identified 925 patients with complete clinical and radiological data. Among them, the proportions of late EVT eligibility were 2.5% (n=23) with DAWN, 5.1% (n=47) with DEFUSE-3, and 11.1% (n=103) with more liberal criteria. Considering late-arriving patients with large vessel occlusion (n=221), the percentages of eligible patients were 10.4%, 21.3%, and 46.6%, respectively. A favorable outcome was observed at comparable rates in treated patients selected by trial or liberal criteria (67% vs 58%, p=0.49).ConclusionsIn a long-term stroke registry, the proportion of late EVT eligibility varied greatly according to selection criteria and referral pattern. Among late-arriving patients referred to our comprehensive stroke center, we found 5.6% eligible according to trial (DAWN/DEFUSE-3) and 11.1% according to liberal criteria. These data indicate that late EVT could be offered to a larger population of patients if more liberal criteria are applied.


Sign in / Sign up

Export Citation Format

Share Document