scholarly journals Evaluation of h- and g-indices of Scientific Authors using Modified K-Means Clustering Algorithm

Author(s):  
S. Govinda Rao ◽  
A. Govardhan

<p>In this paper we proposed modified K-means algorithm to assess scientific authors performance by using their h,g-indices values. K-means suffers from poor computational scaling and efficiency as the number of clusters has to be supplied by the user. Hence, in this work, we introduce a modification of K-means algorithm that efficiently searches the data to cluster points by compute the sum of squares within each cluster which makes the program to select the most promising subset of classes for clustering. The proposed algorithm was tested on IRIS and ZOO data sets as well as on our local dataset comprising of h- and g-indices, which are the prominent markers for scientific excellence of authors publishing papers in various national and international journals. Results from analysis reveal that the modified k-means algorithm is much faster and outperforms the conventional algorithm in terms of clustering performance, measured by the data discrepancy factor.</p>

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Yiwen Zhang ◽  
Yuanyuan Zhou ◽  
Xing Guo ◽  
Jintao Wu ◽  
Qiang He ◽  
...  

The K-means algorithm is one of the ten classic algorithms in the area of data mining and has been studied by researchers in numerous fields for a long time. However, the value of the clustering number k in the K-means algorithm is not always easy to be determined, and the selection of the initial centers is vulnerable to outliers. This paper proposes an improved K-means clustering algorithm called the covering K-means algorithm (C-K-means). The C-K-means algorithm can not only acquire efficient and accurate clustering results but also self-adaptively provide a reasonable numbers of clusters based on the data features. It includes two phases: the initialization of the covering algorithm (CA) and the Lloyd iteration of the K-means. The first phase executes the CA. CA self-organizes and recognizes the number of clusters k based on the similarities in the data, and it requires neither the number of clusters to be prespecified nor the initial centers to be manually selected. Therefore, it has a “blind” feature, that is, k is not preselected. The second phase performs the Lloyd iteration based on the results of the first phase. The C-K-means algorithm combines the advantages of CA and K-means. Experiments are carried out on the Spark platform, and the results verify the good scalability of the C-K-means algorithm. This algorithm can effectively solve the problem of large-scale data clustering. Extensive experiments on real data sets show that the accuracy and efficiency of the C-K-means algorithm outperforms the existing algorithms under both sequential and parallel conditions.


Author(s):  
Md. Zakir Hossain ◽  
Md.Nasim Akhtar ◽  
R.B. Ahmad ◽  
Mostafijur Rahman

<span>Data mining is the process of finding structure of data from large data sets. With this process, the decision makers can make a particular decision for further development of the real-world problems. Several data clusteringtechniques are used in data mining for finding a specific pattern of data. The K-means method isone of the familiar clustering techniques for clustering large data sets.  The K-means clustering method partitions the data set based on the assumption that the number of clusters are fixed.The main problem of this method is that if the number of clusters is to be chosen small then there is a higher probability of adding dissimilar items into the same group. On the other hand, if the number of clusters is chosen to be high, then there is a higher chance of adding similar items in the different groups. In this paper, we address this issue by proposing a new K-Means clustering algorithm. The proposed method performs data clustering dynamically. The proposed method initially calculates a threshold value as a centroid of K-Means and based on this value the number of clusters are formed. At each iteration of K-Means, if the Euclidian distance between two points is less than or equal to the threshold value, then these two data points will be in the same group. Otherwise, the proposed method will create a new cluster with the dissimilar data point. The results show that the proposed method outperforms the original K-Means method.</span>


2020 ◽  
Vol 16 (4) ◽  
pp. 84-94
Author(s):  
Xiaodi Huang ◽  
Minglun Ren ◽  
Zhongfeng Hu

The process of K-medoids algorithm is that it first selects data randomly as initial centers to form initial clusters. Then, based on PAM (partitioning around medoids) algorithm, centers will be sequential replaced by all the remaining data to find a result has the best inherent convergence. Since PAM algorithm is an iterative ergodic strategy, when the data size or the number of clusters are huge, its expensive computational overhead will hinder its feasibility. The authors use the fixed-point iteration to search the optimal clustering centers and build a FPK-medoids (fixed point-based K-medoids) algorithm. By constructing fixed point equations for each cluster, the problem of searching optimal centers is converted into the solving of equation set in parallel. The experiment is carried on six standard datasets, and the result shows that the clustering efficiency of proposed algorithm is significantly improved compared with the conventional algorithm. In addition, the clustering quality will be markedly enhanced in handling problems with large-scale datasets or a large number of clusters.


2013 ◽  
Vol 3 (4) ◽  
pp. 1-14 ◽  
Author(s):  
S. Sampath ◽  
B. Ramya

Cluster analysis is a branch of data mining, which plays a vital role in bringing out hidden information in databases. Clustering algorithms help medical researchers in identifying the presence of natural subgroups in a data set. Different types of clustering algorithms are available in the literature. The most popular among them is k-means clustering. Even though k-means clustering is a popular clustering method widely used, its application requires the knowledge of the number of clusters present in the given data set. Several solutions are available in literature to overcome this limitation. The k-means clustering method creates a disjoint and exhaustive partition of the data set. However, in some situations one can come across objects that belong to more than one cluster. In this paper, a clustering algorithm capable of producing rough clusters automatically without requiring the user to give as input the number of clusters to be produced. The efficiency of the algorithm in detecting the number of clusters present in the data set has been studied with the help of some real life data sets. Further, a nonparametric statistical analysis on the results of the experimental study has been carried out in order to analyze the efficiency of the proposed algorithm in automatic detection of the number of clusters in the data set with the help of rough version of Davies-Bouldin index.


2004 ◽  
Vol 16 (6) ◽  
pp. 1299-1323 ◽  
Author(s):  
Tilman Lange ◽  
Volker Roth ◽  
Mikio L. Braun ◽  
Joachim M. Buhmann

Data clustering describes a set of frequently employed techniques in exploratory data analysis to extract “natural” group structure in data. Such groupings need to be validated to separate the signal in the data from spurious structure. In this context, finding an appropriate number of clusters is a particularly important model selection question. We introduce a measure of cluster stability to assess the validity of a cluster model. This stability measure quantifies the reproducibility of clustering solutions on a second sample, and it can be interpreted as a classification risk with regard to class labels produced by a clustering algorithm. The preferred number of clusters is determined by minimizing this classification risk as a function of the number of clusters. Convincing results are achieved on simulated as well as gene expression data sets. Comparisons to other methods demonstrate the competitive performance of our method and its suitability as a general validation tool for clustering solutions in real-world problems.


Author(s):  
Derrick S. Boone

The accuracy of “stopping rules” for determining the number of clusters in a data set is examined as a function of the underlying clustering algorithm being used. Using a Monte Carlo study, various stopping rules, used in conjunction with six clustering algorithms, are compared to determine which rule/algorithm combinations best recover the true number of clusters. The rules and algorithms are tested using disparately sized, artificially generated data sets that contained multiple numbers and levels of clusters, variables, noise, outliers, and elongated and unequally sized clusters. The results indicate that stopping rule accuracy depends on the underlying clustering algorithm being used. The cubic clustering criterion (CCC), when used in conjunction with mixture models or Ward’s method, recovers the true number of clusters more accurately than other rules and algorithms. However, the CCC was more likely than other stopping rules to report more clusters than are actually present. Implications are discussed.


2015 ◽  
Vol 4 (2) ◽  
pp. 231 ◽  
Author(s):  
Omar Kettani ◽  
Faical Ramdani ◽  
Benaissa Tadili

<p>In data mining, K-means is a simple and fast algorithm for solving clustering problems, but it requires that the user provides in advance the exact number of clusters (k), which is often not obvious. Thus, this paper intends to overcome this problem by proposing a parameter-free algorithm for automatic clustering. It is based on successive adequate restarting of K-means algorithm. Experiments conducted on several standard data sets demonstrate that the proposed approach is effective and outperforms the related well known algorithm G-means, in terms of clustering accuracy and estimation of the correct number of clusters.</p>


2019 ◽  
Vol 22 (1) ◽  
pp. 55-58
Author(s):  
Nahla Ibraheem Jabbar

Our proposed method used to overcome the drawbacks of computing values parameters in the mountain algorithm to image clustering. All existing clustering algorithms are required values of parameters to starting the clustering process such as these algorithms have a big problem in computing parameters. One of the famous clustering is a mountain algorithm that gives expected number of clusters, we presented in this paper a new modification of mountain clustering called Spatial Modification in the Parameters of Mountain Image Clustering Algorithm. This modification in the spatial information of image by taking a window mask for each center pixel value to compute distance between pixel and neighborhood for estimation the values of parameters σ, β that gives a potential optimum number of clusters requiring in image segmentation process. Our experiments show ability the proposed algorithm in image brain segmentation with a quality in the large data sets


Author(s):  
D T Pham ◽  
S S Dimov ◽  
C D Nguyen

The K-means algorithm is a popular data-clustering algorithm. However, one of its drawbacks is the requirement for the number of clusters, K, to be specified before the algorithm is applied. This paper first reviews existing methods for selecting the number of clusters for the algorithm. Factors that affect this selection are then discussed and a new measure to assist the selection is proposed. The paper concludes with an analysis of the results of using the proposed measure to determine the number of clusters for the K-means algorithm for different data sets.


2012 ◽  
Vol 490-495 ◽  
pp. 1372-1376
Author(s):  
Qing Feng Liu

The fuzzy C-means algorithm is an iterative algorithm in which the desired number of clusters C and the initial clustering seeds has to be pre-defined. The seeds are modified in each stage of the algorithm and for each object a degree of membership to each of the clusters is estimated. In this paper, an extensional clustering algorithm of FCM based on an intuitionistic extension index, denoted E-FCM algorithm, is proposed. For comparing the performance of the above mentioned two algorithms, the experimental results of three benchmark data sets show that the E-FCM algorithm outperforms the FCM algorithm.


Sign in / Sign up

Export Citation Format

Share Document