scholarly journals Design and analysis of multiple read port techniques using bank division with XOR method for multi-ported-memory on FPGA platform

Author(s):  
Druva Kumar S. ◽  
Roopa M.

<span lang="EN-US">The multiple read and write operations are performed simultaneously by multi-ported memories and are used in advanced digital design applications on reprogrammable field-programmable gate arrays (FPGAs) to achieve higher bandwidth. The Memory modules are configured by block RAM (BRAMs), which utilizes more area and power on FPGA. In this manuscript, the techniques to increase the read ports for multi-ported memory modules are designed using the bank division with XOR (BDX) approach. The read port techniques like two read-one write (2R1W) memory, hybrid mode approach either 2R1W or 4R memory, and hierarchical BDX (HBDX) Approach using 2R1W/4R memory are designed on FPGA platform. The Proposed work utilizes only slices and look-up table (LUT's) rather than BRAMs while designing the memory modules on FPGA, which reduces the computational complexity and improves the system performance.  The experimental results are analyzed on Artix-7 FPGA. The performance parameters like slices, LUT utilization, maximum frequency (Fmax), and hardware efficiency are analyzed by concerning different memory depths. The 4R1W memory design using the HBDX approach utilizes 4% slices and works at 449.697 MHz operating frequency on Artix-7 FPGA. The proposed work provides a better platform to choose the proper read port technique to design an efficient modular multiport memory architecture.</span>

Electronics ◽  
2021 ◽  
Vol 10 (18) ◽  
pp. 2229
Author(s):  
Alexander Magyari ◽  
Yuhua Chen

Field-Programmable Gate Arrays (FPGAs) are relatively high-end devices that are not easily shared between multiple users. In this work, we achieved a remotely accessible FPGA framework using accessible Internet of Things (IoT) approaches. We sought to develop a method for students to receive the same level of educational quality in a remote environment that they would receive in a typical, in-person course structure for a university-level digital design course. Keeping cost in mind, we are able to combine the functionality of an entry-level FPGA and a Raspberry Pi Zero to provide IoT access for laboratory work. Previous works in this field allow only one user to access an FPGA at a time, which requires students to schedule time slots. Our design is unique in that it gives multiple users the ability to interact simultaneously with one individual top-level design on an FPGA. This novel design has the benefit for classroom presentations, collaboration and debugging, and eliminates the need for restricting student access to a time slot for FPGA access. Further, our hardware wrapper is lightweight, utilizing less than 1% of tested FPGA chips, allowing it to be integrated with resource-heavy designs. The application is meant to scale with large designs; there is no difference between how many users can interact with the remote design, regardless of the complexity of the design. Further, the number of users who can interact with a single project is limited only by the bandwidth restrictions imposed by Google Fire Base, which is far beyond any practical number of users for simultaneous access.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2108
Author(s):  
Mohamed Yassine Allani ◽  
Jamel Riahi ◽  
Silvano Vergura ◽  
Abdelkader Mami

The development and optimization of a hybrid system composed of photovoltaic panels, wind turbines, converters, and batteries connected to the grid, is first presented. To generate the maximum power, two maximum power point tracker controllers based on fuzzy logic are required and a battery controller is used for the regulation of the DC voltage. When the power source varies, a high-voltage supply is incorporated (high gain DC-DC converter controlled by fuzzy logic) to boost the 24 V provided by the DC bus to the inverter voltage of about 400 V and to reduce energy losses to maximize the system performance. The inverter and the LCL filter allow for the integration of this hybrid system with AC loads and the grid. Moreover, a hardware solution for the field programmable gate arrays-based implementation of the controllers is proposed. The combination of these controllers was synthesized using the Integrated Synthesis Environment Design Suite software (Version: 14.7, City: Tunis, Country: Tunisia) and was successfully implemented on Field Programmable Gate Arrays Spartan 3E. The innovative design provides a suitable architecture based on power converters and control strategies that are dedicated to the proposed hybrid system to ensure system reliability. This implementation can provide a high level of flexibility that can facilitate the upgrade of a control system by simply updating or modifying the proposed algorithm running on the field programmable gate arrays board. The simulation results, using Matlab/Simulink (Version: 2016b, City: Tunis, Country: Tunisia, verify the efficiency of the proposed solution when the environmental conditions change. This study focused on the development and optimization of an electrical system control strategy to manage the produced energy and to coordinate the performance of the hybrid energy system. The paper proposes a combined photovoltaic and wind energy system, supported by a battery acting as an energy storage system. In addition, a bi-directional converter charges/discharges the battery, while a high-voltage gain converter connects them to the DC bus. The use of a battery is useful to compensate for the mismatch between the power demanded by the load and the power generated by the hybrid energy systems. The proposed field programmable gate arrays (FPGA)-based controllers ensure a fast time response by making control executable in real time.


Sign in / Sign up

Export Citation Format

Share Document