scholarly journals An approach for cross-modality guided quality enhancement of liver image

Author(s):  
Ahmed Elaraby ◽  
Ayman Taha

<p><span>A novel approach for multimodal liver image contrast enhancement is put forward in this paper. The proposed approach utilizes magnetic resonance imaging (MRI) scan of liver as a guide to enhance the structures of computed tomography (CT) liver. The enhancement process consists of two phases: The first phase is the transformation of MRI and CT modalities to be in the same range. Then the histogram of CT liver is adjusted to match the histogram of MRI. In the second phase, an adaptive histogram equalization technique is presented by splitting the CT histogram into two sub-histograms and replacing their cumulative distribution functions with two smooths sigmoid. The subjective and objective assessments of experimental results indicated that the proposed approach yields better results. In addition, the image contrast is effectively enhanced as well as the mean brightness and details are well preserved.</span></p>

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Haidi Ibrahim ◽  
Seng Chun Hoo

Digital image contrast enhancement methods that are based on histogram equalization technique are still useful for the use in consumer electronic products due to their simple implementation. However, almost all the suggested enhancement methods are using global processing technique, which does not emphasize local contents. Therefore, this paper proposes a new local image contrast enhancement method, based on histogram equalization technique, which not only enhances the contrast, but also increases the sharpness of the image. Besides, this method is also able to preserve the mean brightness of the image. In order to limit the noise amplification, this newly proposed method utilizes local mean-separation, and clipped histogram bins methodologies. Based on nine test color images and the benchmark with other three histogram equalization based methods, the proposed technique shows the best overall performance.


Sign in / Sign up

Export Citation Format

Share Document