brightness preservation
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 0)

Author(s):  
FAHMI AKMAL DZULKIFLI

Contrast enhancement plays an important part in image processing. In histology, the application of a contrast enhancement technique is necessary since it can help pathologists in diagnosing the sample slides by increasing the visibility of the morphological and features of cells in an image. Various techniques have been proposed to enhance the contrast of microscopic images. Thus, this paper aimed to study the effectiveness of contrast enhancement techniques in enhancing the Ki67 images of astrocytoma. Three contrast enhancement techniques consist of contrast stretching, histogram equalization, and CLAHE techniques were proposed to enhance the sample images. The performance of each technique was compared by computing seven quantitative measures. The CLAHE technique was preferred for enhancing the contrast of the astrocytoma images. This technique produces good results especially in contrast enhancement, edge conservation and enhancement, brightness preservation, and minimum distortions to the enhanced images. 


2020 ◽  
Vol 8 (3) ◽  
pp. 96-118
Author(s):  
Geeta Rani ◽  
Monika Agarwal

In the recent era, a boom was observed in the field of information retrieval from images. Digital images with high contrast are sources of abundant information. The gathered information is useful in the precise detection of an object, event, or anomaly captured in an image scene. Existing systems do uniform distribution of intensities and apply intensity histogram equalization. These improve the characteristics of an image in terms of visual appearance. The problem of over enhancement and the increase in noise level produces undesirable visual artefacts. The use of Otsu's single threshold method in existing systems is inefficient for segmenting an image with multiple objects and complex background. Additionally, these are incapable to improve the yield of the maximum entropy and brightness preservation. The aforementioned limitations motivate us to propose an efficient statistical pipelined approach, the Range Limited Double Threshold Weighted Histogram Equalization (RLDTWHE). This approach is an integration of Otsu's double threshold, dynamic range stretching, weighted distribution, adaptive gamma correction, and homomorphic filtering. It provides optimum contrast enhancement by selecting the best appropriate threshold value for image segmentation. The proposed approach is efficient in the enhancement of low contrast medical MRI images and digital natural scene images. It effectively preserves all essential information recorded in an image. Experimental results prove its efficacy in terms of maximum entropy preservation, brightness preservation, contrast enhancement, and retaining the natural appearance of an image.


2020 ◽  
Author(s):  
Julio César Mello Román ◽  
Horacio Legal-Ayala ◽  
José Luis Vázquez Noguera ◽  
Diego P. Pinto-Roa

Sign in / Sign up

Export Citation Format

Share Document