Vision-based Crack Identification on the Concrete Slab Surface using Fuzzy Reasoning Rules and Self-Organizing

Author(s):  
Kwang Baek Kim ◽  
Hyun Jun Park ◽  
Doo Heon Song

Identifying cracks on the surface of concrete slab structure is important for structure stability maintenance. In order to avoid subjective visual inspection, it is necessary to develop an automated identification and measuring system by vision based method. Although there have been some intelligent computerized inspection methods, they are sensitive to noise due to the brightness contrast and objects such as forms and joints of certain size often falsely classified as cracks. In this paper, we propose a new fuzzy logic based image processing method that extracts cracks from concrete slab structure including small cracks that were often neglected as noise. We extract candidate crack areas by applying fuzzy method with three color channel values of concrete slab structure. Then further refinement processes are performed with Self Organizing Map algorithm and density based noise removal process to obtain basic crack characteristic attributes for further analysis. Experimental result verifies that the proposed method is sufficiently identified cracks with various sizes with high accuracy (97.3%) among 1319 ground truth cracks from 30 images.

Author(s):  
Kwang Baek Kim ◽  
Hyun Jun Park ◽  
Doo Heon Song

Identifying cracks on the surface of concrete slab structure is important for structure stability maintenance. In order to avoid subjective visual inspection, it is necessary to develop an automated identification and measuring system by vision based method. Although there have been some intelligent computerized inspection methods, they are sensitive to noise due to the brightness contrast and objects such as forms and joints of certain size often falsely classified as cracks. In this paper, we propose a new fuzzy logic based image processing method that extracts cracks from concrete slab structure including small cracks that were often neglected as noise. We extract candidate crack areas by applying fuzzy method with three color channel values of concrete slab structure. Then further refinement processes are performed with Self Organizing Map algorithm and density based noise removal process to obtain basic crack characteristic attributes for further analysis. Experimental result verifies that the proposed method is sufficiently identified cracks with various sizes with high accuracy (97.3%) among 1319 ground truth cracks from 30 images.


2010 ◽  
Vol 439-440 ◽  
pp. 29-34 ◽  
Author(s):  
Zhen Guo Chen ◽  
Guang Hua Zhang ◽  
Li Qin Tian ◽  
Zi Lin Geng

The rate of false positives which caused by the variability of environment and user behavior limits the applications of intrusion detecting system in real world. Intrusion detection is an important technique in the defense-in-depth network security framework and a hot topic in computer security in recent years. To solve the intrusion detection question, we introduce the self-organizing map and artificial immunisation algorithm into intrusion detection. In this paper, we give an method of rule extraction based on self-organizing map and artificial immunisation algorithm and used in intrusion detection. After illustrating our model with a representative dataset and applying it to the real-world datasets MIT lpr system calls. The experimental result shown that We propose an idea of learning different representations for system call arguments. Results indicate that this information can be effectively used for detecting more attacks with reasonable space and time overhead. So our experiment is feasible and effective that using in intrusion detection.


Author(s):  
Artyom Shootov ◽  
Yuriy Chizhov ◽  
Alexander Oks ◽  
Alexei Katashev

The present article is a series of publications dedicated to the research of smart fabric sensors integrated into socks and is also part of the project aimed at developing the measuring system based on smart fabric supplied with sensors and intellectual data processing. The aim of the article is to perform a practical study on the application of Self-Organizing Map to smart textile signal clustering. Within the framework of the research, different approaches to the organization of network training are explored. A method for encoding an input pattern is also proposed. It has been established that the network is able to recognize the signal as a good step, a bad step, and an unrecognized step. The primary classification allows further selecting specific algorithms for a detailed analysis of good steps and bad steps. The detailed analysis of bad steps is the key to solving the problem of revealing of an athlete’s special type of fatigue, leading to injuries.


2012 ◽  
Vol 132 (10) ◽  
pp. 1589-1594 ◽  
Author(s):  
Hayato Waki ◽  
Yutaka Suzuki ◽  
Osamu Sakata ◽  
Mizuya Fukasawa ◽  
Hatsuhiro Kato

2011 ◽  
Vol 131 (1) ◽  
pp. 160-166 ◽  
Author(s):  
Yutaka Suzuki ◽  
Mizuya Fukasawa ◽  
Osamu Sakata ◽  
Hatsuhiro Kato ◽  
Asobu Hattori ◽  
...  

2018 ◽  
Vol 9 (3) ◽  
pp. 209-221 ◽  
Author(s):  
Seung-Yoon Back ◽  
Sang-Wook Kim ◽  
Myung-Il Jung ◽  
Joon-Woo Roh ◽  
Seok-Woo Son

Sign in / Sign up

Export Citation Format

Share Document