scholarly journals Unit Commitment Problem in Electrical Power System: A Literature Review

Author(s):  
Idriss Abdou ◽  
Mohamed Tkiouat

Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties.

Author(s):  
Ayani Nandi ◽  
Vikram Kumar Kamboj

AbstractConventional unit commitment problem (UCP) consists of thermal generating units and its participation schedule, which is a stimulating and significant responsibility of assigning produced electricity among the committed generating units matter to frequent limitations over a scheduled period view to achieve the least price of power generation. However, modern power system consists of various integrated power generating units including nuclear, thermal, hydro, solar and wind. The scheduling of these generating units in optimal condition is a tedious task and involves lot of uncertainty constraints due to time carrying weather conditions. This difficulties come to be too difficult by growing the scope of electrical power sector day by day, so that UCP has connection with problem in the field of optimization, it has both continuous and binary variables which is the furthermost exciting problem that needs to be solved. In the proposed research, a newly created optimizer, i.e., Harris Hawks optimizer (HHO), has been hybridized with sine–cosine algorithm (SCA) using memetic algorithm approach and named as meliorated Harris Hawks optimizer and it is applied to solve the photovoltaic constrained UCP of electric power system. In this research paper, sine–cosine Algorithm is used for provision of power generation (generating units which contribute in electric power generation for upload) and economic load dispatch (ELD) is completed by Harris Hawks optimizer. The feasibility and efficacy of operation of the hybrid algorithm are verified for small, medium power systems and large system considering renewable energy sources in summer and winter, and the percentage of cost saving for power generation is found. The results for 4 generating units, 5 generating units, 6 generating units, 7 generating units, 10 generating units, 19 generating units, 20 generating units, 40 generating units and 60 generating units are evaluated. The 10 generating units are evaluated with 5% and 10% spinning reserve. The efficacy of the offered optimizer has been verified for several standard benchmark problem including unit commitment problem, and it has been observed that the suggested optimizer is too effective to solve continuous, discrete and nonlinear optimization problems.


2002 ◽  
Vol 12 (06) ◽  
pp. 1333-1356 ◽  
Author(s):  
YOSHISUKE UEDA ◽  
HIROYUKI AMANO ◽  
RALPH H. ABRAHAM ◽  
H. BRUCE STEWART

As part of an ongoing project on the stability of massively complex electrical power systems, we discuss the global geometric structure of contacts among the basins of attraction of a six-dimensional dynamical system. This system represents a simple model of an electrical power system involving three machines and an infinite bus. Apart from the possible occurrence of attractors representing pathological states, the contacts between the basins have a practical importance, from the point of view of the operation of a real electrical power system. With the aid of a global map of basins, one could hope to design an intervention strategy to boot the power system back into its normal state. Our method involves taking two-dimensional sections of the six-dimensional state space, and then determining the basins directly by numerical simulation from a dense grid of initial conditions. The relations among all the basins are given for a specific numerical example, that is, choosing particular values for the parameters in our model.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
J. A. Marmolejo ◽  
R. Rodriguez

This paper describes the use of Chambers-Mallows-Stuck method for simulating stable random variables in the generation of test systems for economic analysis in power systems. A study that focused on generating test electrical systems through fat tail model for unit commitment problem in electrical power systems is presented. Usually, the instances of test systems in Unit Commitment are generated using normal distribution, but in this work, simulations data are based on a new method. For simulating, we used three original systems to obtain the demand behavior and thermal production costs. The estimation of stable parameters for the simulation of stable random variables was based on three generally accepted methods: (a) regression, (b) quantiles, and (c) maximum likelihood, choosing one that has the best fit of the tails of the distribution. Numerical results illustrate the applicability of the proposed method by solving several unit commitment problems.


Author(s):  
Karthik N ◽  
A K Parvathy ◽  
Arul Rajagopalan ◽  
S Baskar

<p>Unit Commitment (UC) is an optimization problem used to find out the least cost dispatch of obtainable generation resources to meet up an expected electric power demand over a certain time perspective under generational, technical and ecological constraints. In the midst of the momentous increase of non-conventional energy sources incorporation into the power system networks, effects caused by these system alterations to the UC are dynamically being studied and examined by worldwide researchers. This paper presents a literature review of application of several optimization algorithms to elucidate the UC problem in microgrids. Lastly a few basic challenges arising from the new optimization approaches in microgrids are addressed.</p>


2014 ◽  
Vol 3 (4) ◽  
pp. 34-54 ◽  
Author(s):  
Vikram Kumar Kamboj ◽  
S.K. Bath

Biogeography Based Optimization (BBO) algorithm is a population-based algorithm based on biogeography concept, which uses the idea of the migration strategy of animals or other spices for solving optimization problems. Biogeography Based Optimization algorithm has a simple procedure to find the optimal solution for the non-smooth and non-convex problems through the steps of migration and mutation. This research paper presents the solution to Economic Load Dispatch Problem for IEEE 3, 4, 6 and 10-unit generating model using Biogeography Based Optimization algorithm. It also presents the mathematical formulation of scalar and multi-objective unit commitment problem, which is a further extension of economic load dispatch problem.


2014 ◽  
Vol 8 (5) ◽  
pp. 45
Author(s):  
Ali Khraiwish Dalabeeh ◽  
Eng.Hani Hasan Saleh Al-Hajbi

This study presents a comprehensive procedure for evaluating the reliability indices incorporating reduction in interruption cost, and to relate reliability investments with customer’s benefits. An analytical algorithm is used to obtain the final optimal operational solution by determining unit commitment for each generating unit to reach the maximum profit (minimizing cost) subjected to operational constraints. The paper describes a method based on the complementing short-term planning with long-term planning take into account the cost benefit approach. The proposed method has been demonstrated on the RBTS to show the feasibility and the economic effect of the proposed method, and was applied to the Jordanian Electric Power System (JEPS) to show its application capability.


Sign in / Sign up

Export Citation Format

Share Document