scholarly journals Analysis of an energy storage sizing for grid-connected photovoltaic system

Author(s):  
Aimie Nazmin Azmi ◽  
Norhafiz Salim ◽  
Aziah Khamis

This paper present on the analysis of an energy storage sizing for a small grid-connected PV system.  This project is to study the proper sizing of energy storage (battery) in a grid-connected PV system for consumers whom purchase and sell electricity from and to the utility grid. The goal is to minimize the total cost of the operation for a consumer with a PV system with a battery storage system. This is to make sure that minimizing the total annual operating cost while maintaining an efficient system. This study uses typical consumer load consumption, and solar irradiance data throughout a year, while varying the type of battery storage (study lead acid and Lithium ion battery) as an energy storage for a similar system. Since lithium ion is not the main options to be integrated with PV system, this study will then reveal the data in terms of cost on why it is not a popular choice.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1402 ◽  
Author(s):  
Robert Małkowski ◽  
Marcin Jaskólski ◽  
Wojciech Pawlicki

This paper presents research on a hybrid photovoltaic-battery energy storage system, declaring its hourly production levels as a member of a balancing group submitting common scheduling unit to the day-ahead market. It also discusses the variability of photovoltaic system generation and energy storage response. The major research questions were whether the operation of a hybrid photovoltaic-battery energy storage system is viable from the technical and economic viewpoint and how to size battery energy storage for that purpose. The DIgSILENT PowerFactory environment was used to develop the simulation model of postulated hybrid system. Then, tests were conducted on real devices installed in the LINTE^2 laboratory at Gdańsk University of Technology, Poland. Firstly, power generation in the photovoltaic system was modeled using hardware in the loop technique and tested in cooperation with emulated photovoltaic and real battery energy storage system (lithium-ion battery, 25 kWh). Secondly, a real photovoltaic power plant (33 kW) and real battery energy storage were applied. The results obtained from laboratory experiments showed that market operation of hybrid photovoltaic-battery energy storage system is feasible. However, developing a control strategy constitutes a great challenge, as the operator is forced to intervene more frequently than the simulation models indicate in order to keep the parameters of battery storage within accepted ranges, especially in view of a sudden weather breakdown. Levelized cost of electricity from photovoltaic-battery energy storage system varied from 314 to 455 $/MWh, which has proven to be from two to three times higher than the current annual average day-ahead market price in Poland.


The variations produced by the change in cloud cloud cover can cause rapid fluctuations in power generated by photovoltaic system. Thus, energy storage system are necessary in order to smooth power fluctuations. The main objective of this paper is to design photovoltaic system to regulate the fluctuations through energy storage system. Thus we have proposed a system in which we use dc-dc converter for MPPT application , TL494 IC generate the pulse for charging the battery as well as to regulate the fluctuatios.


2020 ◽  
Vol 12 (17) ◽  
pp. 6781 ◽  
Author(s):  
Muhammad Moin Afzal ◽  
Muhammad Adil Khan ◽  
Muhammad Arshad Shehzad Hassan ◽  
Abdul Wadood ◽  
Waqar Uddin ◽  
...  

Renewable energy resources (RERs) play a vital role in reducing greenhouse gases, as well as balancing the power generation demand in daily life. Due to the high penetration of RERs and non-linear loads into utility power systems, various power quality issues arise, i.e., voltage drop, harmonic distortion, reactive power demand, etc. In order to handle these power quality issues, there is a need for smart flexible alternating current transmission system (FACTS) devices. In this paper, a super capacitor energy storage system (SCESS)-based static synchronous compensator (STATCOM) is designed in order for the grid-connected photovoltaic (PV) system to overcome the abovementioned power quality issues. A voltage controller and a d-q axis controller are used for the efficient performance of the STATCOM. In order to show the superiority of the supercapacitor, a detailed comparison is made between a battery energy storage system (BESS)-based STATCOM and a SCESS-based STATCOM. Four scenarios are studied to evaluate the performance of the proposed STATCOM design. The proposed SCESS-based STATCOM not only boosts the voltage but also stabilizes it from 368 V to 385 V (Ph-Phrms). The simulated results have confirmed that the proposed design is not only superior to a BESS-based STATCOM but also has the capability to overcome the power quality issues as well.


Author(s):  
Matthias Pilz ◽  
Luluwah Al-Fagih ◽  
Eckhard Pfluegel

Energy storage systems will play a key role for individual users in the future smart grid. They serve two purposes: (i) handling the intermittent nature of renewable energy resources for a more reliable and efficient system, and (ii) preventing the impact of blackouts on users and allowing for more independence from the grid, while saving money through load-shifting. In this paper we investigate the latter scenario by looking at a neighbourhood of 25 households whose demand is satisfied by one utility company. Assuming the users possess lithium-ion batteries, we answer the question of how each household can make the best use of their individual storage system given a real-time pricing policy. To this end, each user is modelled as a player of a non-cooperative scheduling game. The novelty of the game lies in the advanced battery model, which incorporates charging and discharging characteristics of lithium-ion batteries. The action set for each player comprises day-ahead schedules of their respective battery usage. We analyse different user behavior and are able to obtain a realistic and applicable understanding of the potential of these systems. As a result, we show the correlation between the efficiency of the battery and the outcome of the game.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2312
Author(s):  
Marco Pasetti

Battery energy storage systems (BESSs) are increasingly adopted to mitigate the negative effects caused by the intermittent generation of photovoltaic (PV) systems. The majority of commercial BESSs implement the self-consumption, rule-based approach, which aims at storing the excess of PV production, and then reusing it when the power demand of the loads exceeds the PV power generation. Even though this approach proved to be a valid solution to increase the self-consumption of distributed generators, its ability to reduce the power flow uncertainties caused by PV systems is still debatable. To fill this gap, this study aims at answering this question by proposing a dedicated set of key performance indicators (KPIs). These KPIs are used to evaluate the performance of a 13.8 kWp/25.2 kWh Lithium-Ion BESS coupled with a 64 kWp PV system. The results of the study revealed that the impact of the storage system had almost negligible effects on the uncertainty of the net power flows, while showing better results in terms of the reduction of the absolute power ramps, particularly during the BESS charge stages. These results represent an interesting point of discussion by suggesting that different storage control approaches should be investigated.


Author(s):  
Oluwole K. Bowoto ◽  
Omonigho P. Emenuvwe ◽  
Meysam N. Azadani

AbstractThis study proposes a design model for conserving and utilizing energy affordably and intermittently considering the wind rush experienced in the patronage of renewable energy sources for cheaper generation of electricity and the solar energy potential especially in continents of Africa and Asia. Essentially, the global quest for sustainable development across every sector is on the rise; hence, the need for a sustainable method of extracting energy cheaply with less wastage and pollution is on the priority list. This research, integrates and formulates different ideologies, factors and variables that have been adopted in previous research studies to create an efficient system. Some of the aforementioned researches includes pumped hydro gravity storage system, Compressed air gravity storage system, suspended weight in abandoned mine shaft, dynamic modelling of gravity energy storage coupled with a PV energy plant and deep ocean gravity energy storage. As an alternative and a modification to these systems, this research is proposing a Combined solar and gravity energy storage system. The design synthesis and computational modelling of the proposed system model were investigated using a constant height and but varying mass. Efficiencies reaching up to 62% was achieved using the chosen design experimental parameters adopted in this work. However, this efficiency can be tremendously improved upon if the design parameters are modified putting certain key factors which are highlighted in the limitation aspect of this research into consideration. Also, it was observed that for a test load of 50 × 103 mA running for 10 h (3600 s), the proposed system will only need to provide a torque of 3.27Nm and a height range of 66.1 × 104 m when a mass of 10 kg is lifted to give out power of 48 kwh. Since gravity storage requires intermittent actions and structured motions, mathematical models were used to analyse the system performance characteristics amongst other important parameters using tools like MATLAB Simscape modelling toolbox, Microsoft excel and Sysml Model software.


Sign in / Sign up

Export Citation Format

Share Document