Daily Constant PV Output Power Supplying AC pumps using Batteries

Author(s):  
Mohamed Mahmoud Ismail

This paper presents 200 KW three phase standalone photovoltaic systems supplying pumping station consist of four pumps 40 KW rating. The system utilizes a two stage energy conversion power conditioning unit topology composed of a DC-DC boost converter and three level-three phase voltage source inverter (VSI). The Boost converter in this paper is designed to operate in continuous mode and controlled for maximum power point tracking (MPPT). The fluctuating output power of the PV array system during the day is the commonly problem in the power system.  In this paper a nickel-Cadmium battery will be used to maintain the output power generated from the PV array supplying the pumps to be constant all the day under different operating conditions. The system is modeled and studied using MATLAB/Simulink

Author(s):  
Mohamed Mahmoud Ismail ◽  
Ahmed Fahmy Bendary

This paper presents 500 KW three phase standalone photovoltaic systems supplying pumping station consist of four pumps 80 KW rating. The system utilizes a two stage energy conversion power conditioning unit topology composed of a DC-DC boost converter and three level-three phase voltage source inverter (VSI). The Boost converter in this paper is designed to operate in continuous mode and controlled for maximum power point tracking (MPPT). In this paper, the performance of the pumps is improved by adapting the controller of MPPT using different techniques. The system is modeled and studied using MATLAB/Simulink.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 97 ◽  
Author(s):  
M Jayakumar ◽  
V Vanitha ◽  
V Jaisuriya ◽  
M Karthikeyan ◽  
George Daniel ◽  
...  

Solar power is widely available around the globe but efficient transfer of solar power to the load becomes a challenging task. There are various methods in which the power transfer can be done, the following work proposes a method for efficient tracking of solar power.  MPPT [ maximum power point tracking] algorithm applied on three phase voltage source inverter connected to solar PV array with a three phase load. MPPT is applied on inverter rather than conventionally applying MPPT on DC-DC converter. Perturb and Observe method is applied in the MPPT algorithm to find the optimal modulation index for the inverter to transfer maximum power from the panel. Sine pulse width modulation technique is employed for controlling the switching pattern of the inverter. The algorithm is programmed for changing irradiation and temperature condition. The system does not oscillate about the MPP point as the algorithm set the system at MPP and does not vary till a variation in irradiation is sensed.  The proposed system can be installed at all places and will reduce the cost, size and losses compared to conventional system. 


IJOSTHE ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Sandeep Kumar ◽  
Brijesh Roshan Sahu

Maximum power point tracking (MPPT) techniques are used in photovoltaic (PV) systems to maximize the PV array output power by tracking continuously the maximum power point (MPP) which depends on panels temperature and on irradiance conditions. In this work we have made a comparison between P & O algorithm with proposed adaptive reference algorithm. It has been concluded that The power output with adaptive reference algorithm at the load terminal is coming to be 6.5 kilo Watts approximately where as with P & O it is calculated to be 1.5 kilo watts approximately. Hence it is a better proposed algorithm as compared to traditional P & O technique


Maximum power point tracking is a method employed to produce the utmost power available from the photovoltaic module. To date, many algorithms for maximum power point tracking technique had been stated, every with its own capabilities. In this paper, a Luo converter with high-voltage conversion gain is employed to track photovoltaic panels at maximum power and to step up the voltage to a higher level. This work also aims to validate the performance of the maximum power point tracking system with Luo converter which utilizes incremental conductance techniques. Space vector modulation and sinusoidal pulse width modulations are the control techniques employed to control the three-phase voltage source converter. In order to measure the overall performance indices of the proposed system, a simulation is carried out in MATLAB / Simulink environment.


Author(s):  
Pradeep Rai ◽  
Roshan Nayak

This paper proposes a nonlinear control methodology for three phase grid connected of PV generator. It consists of a PV arrays; a voltage source inverter, a grid filter and an electric grid. The controller objectives are threefold: i) ensuring the Maximum power point tracking (MPPT) in the side of PV panels, ii) guaranteeing a power factor unit in the side of the grid, iii) ensuring the global asymptotic stability of the closed loop system. Based on the nonlinear model of the whole system, the controller is carried out using a Lyapunov approach. It is formally shown, using a theoretical stability analysis and simulation results that the proposed controller meets all the objectives.


Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3182 ◽  
Author(s):  
M. Bani Salim ◽  
H. S. Hayajneh ◽  
A. Mohammed ◽  
S. Ozcelik

Tracking the maximum output power of a photovoltaic (PV) cell is an important problem to harvest more energy at different weather and load conditions. This paper presents the design and simulation of a robust direct adaptive controller (RDAC) for maximum power point tracking (MPPT) device based on boost converter topology. A mathematical model is developed, and a suitable RDAC is designed for MPPT device, and simulations are performed using MATLAB/Simulink to verify the controller’s robustness at varying operating conditions. The real-time irradiance and temperature data are used on an hourly basis to test the suggested MPPT adaptive controller for a typical sunny day in summer and winter. The simulation results show that the RDAC performs excellent tracking under varying conditions such as irradiance, temperature, load, boost converter inductance, and capacitance.


In this paper enhanced adaptive Perturb and Observe maximum power point tracking algorithm is presented for solar PV fed DC-DC to boost converter system. This proposed MPPT algorithm overcome the problem in conventional perturb and observe MPPT technique. The proposed system is modelled in MATLAB Simulink software package. System analyzed with various operating conditions and corresponding results are analyzed. The simulation results were compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document