scholarly journals Dual channel speech enhancement using particle swarm optimization

Author(s):  
Dalal Hamza ◽  
Tariq Tashan

Adaptive processing for canceling noise is a powerful technology for signal processing that can completely remove background noise. In general, various adaptive filter algorithms are used, many of which can lack the stability to handle the convergence rate, the number of filter coefficient variations, and error accuracy within tolerances. Unlike traditional methods, to accomplish these desirable characteristics as well as to efficiently cancel noise, in this paper, the cancelation of noise is formulated as a problem of coefficient optimization, where the particle swarm optimization (PSO) is employed. The PSO is structured to minimize the error by using a very short segment of the corrupted speech. In contrast to the recent and conventional adaptive noise cancellation methods, the simulation results indicate that the proposed algorithm has better capability of noise cancelation. The results show great improvement in signal to noise ratio (SNR) of 96.07 dB and 124.54 dB for finite impulse response (FIR) and infinite impulse response (IIR) adaptive filters respectively.

2019 ◽  
Vol 8 (3) ◽  
pp. 1562-1566

Digital-signal-processing (DSP) is one of the recent emerging techniques contain more filtering operations. It may an image type or audio/ video signal processing. Each processing unit has filtering sections to filter noise elements. Hence, there is a need for efficient and secure algorithmic scheme. Here, a exhaustive scrutiny use of complex optimization algorithms towards the digital-filter construction is conferred. In appropriate, the scrutiny target on the identification of various suggestions and limitations in FIR system design. For exact representations, the infinite impulse response adaptive filters and finite impulse response models are considered for estimation. It is designed to review a various swarm and evolutionary computing structures employed for filter design schemes. Some popular computing algorithms are noticed to recover characteristics of percolate design approach. Further, compared with recent research for identifying the updating features in optimization schemes. Finally, this review suggested that the swarm intelligence based researchers improved the constraints and its attributes.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yunyi Yan ◽  
Yujie He ◽  
Yingying Hu ◽  
Baolong Guo

Video superresolution (VSR) aims to reconstruct a high-resolution video sequence from a low-resolution sequence. We propose a novel particle swarm optimization algorithm named as parameter-optimized multiple swarms PSO (POMS-PSO). We assessed the optimization performance of POMS-PSO by four standard benchmark functions. To reconstruct high-resolution video, we build an imaging degradation model. In view of optimization, VSR is converted to an optimization computation problem. And we take POMS-PSO as an optimization method to solve the VSR problem, which overcomes the poor effect, low accuracy, and large calculation cost in other VSR algorithms. The proposed VSR method does not require exact movement estimation and does not need the computation of movement vectors. In terms of peak signal-to-noise ratio (PSNR), sharpness, and entropy, the proposed VSR method based POMS-PSO showed better objective performance. Besides objective standard, experimental results also proved the proposed method could reconstruct high-resolution video sequence with better subjective quality.


2019 ◽  
Vol 29 (10) ◽  
pp. 2050155 ◽  
Author(s):  
Suman Yadav ◽  
Richa Yadav ◽  
Ashwni Kumar ◽  
Manjeet Kumar

This research paper presents a new evolutionary technique named vortex search optimization (VSO) to design digital 2D finite impulse response (FIR) filter for improved performance both in pass-band and stop-band regions. Optimum filter coefficients are calculated by minimizing the deviation of actual frequency response from specified or desired response. Efficiency of the designed filter is measured by several parameters, such as maximum pass-band ripple, maximum stop-band ripple, mean attenuation in stop band and time taken, to execute the code. Analysis of the performance of designed filter is correlated with various different algorithms like real coded genetic algorithm, particle swarm optimization, genetic search algorithm and hybrid particle swarm optimization gravitational algorithm. Comparative study shows significant reduction in pass-band error, stop-band error and execution time.


2020 ◽  
Vol 53 (4) ◽  
pp. 559-566
Author(s):  
Lakhdar Kaddouri ◽  
Amel B.H. Adamou-Mitiche ◽  
Lahcene Mitiche

Particle Swarm Optimization (PSO) is an evolutionary algorithm widely used in optimization problems. It is characterized by a fast convergence, which can lead the algorithm to stagnate in local optima. In the present paper, a new Multi-PSO algorithm for the design of two-dimensional infinite impulse response (IIR) filters is built. It is based on the standard PSO and uses a new initialization strategy. This strategy is relayed to two types of swarms: a principal and auxiliaries. To improve the performance of the algorithm, the search space is divided into several areas, which allows a best covering and leading to a better exploration in each zone separately. This solved the problem of fast convergence in standard PSO. The results obtained demonstrate the effectiveness of the Multi-PSO algorithm in the filter coefficients optimization.


Sign in / Sign up

Export Citation Format

Share Document