scholarly journals 3.3V DC output at -16dBm sensitivity and 77% PCE rectifier for RF energy harvesting

Author(s):  
Astrie Nurasyeila Fifie Asli ◽  
Yan Chiew Wong

<span>This paper presents a high voltage conversion at high sensitivity RF energy harvesting system for IoT applications. The harvesting system comprises bulk-to-source (BTMOS) differential-drive based rectifier to produce a high efficiency RF energy harvesting system. Low-pass upward impedance matching network is applied at the rectifier input to increase the sensitivity and output voltage. Dual-oxide-thickness transistors are used in the rectifier circuit to maintain the power efficiency at each stage of the rectifier. The system is designed using 0.18µm Silterra RF in deep n-well process technology and achieves 4.07V output at -16dBm sensitivity without the need of complex auxiliary control circuit and DC-DC charge-pump circuit. The system is targeted for urban environment.</span>

Recently, the various methods for RF energy harvesting and reutilizing has become the challenging matter around the world to minimize the wastage of RF energy in the form of electromagnetic waves within the atmosphere. An associate approach of collecting a particular range of frequencies & conversion into dc current- Rectenna is proposed here. Star shaped Dielectric Resonator Antenna is implemented as antenna for receiving RF energy at 2.44 GHz resonant frequency. It is observed that Star shaped DRA exhibits a radiated power of 0.8825 W with respect to 1W incident power and maximum gain of 5.9672 dBi. The RF power received by Antenna is given to a Rectifier circuit via proper impedance matching circuit. The rectified pulsating DC power is given to capacitor filter to suppress harmonics .


Electronics ◽  
2021 ◽  
Vol 10 (15) ◽  
pp. 1764
Author(s):  
Mohamed M. Mansour ◽  
Shota Torigoe ◽  
Shuya Yamamoto ◽  
Haruichi Kanaya

(1) Background: This work presents a high-efficiency, high sensitivity, compact rectifier based on a dual-band impedance matching network that employs a simple and straightforward T-matching circuit, for sub-1 GHz license-free applications. The development of a low-cost RF energy harvester dedicated to the ISM bands is introduced. The proposed rectifier design is optimized to operate at the sub-GHz frequency bands (0.9 to 2.4 GHz), specifically those at the ISM 900 and 2400 MHz. The motivation for this band is due to the low attenuation, well-known fundamental electromagnetic theories and background, and several wireless communications are emitting at those bands, such as RFID (2). Methods: The rectifier design is based on a simple, balanced single-series diode connected with a T-matching circuit. The dual-band performance is achieved by deploying reactive elements in each branch. The full mathematical analysis and simulation results are discussed in the manuscript. (3) Results: The rectifier can achieve a 80 MHz bandwidth around 920 MHz frequency and 200 MHz around the higher band 2.4 GHz. The resultant conversion efficiency level is maintained above 45% at both bands with a peak efficiency reaches up to 70% at the higher band. The optimum terminal load attached to the circuit at which the peak efficiency is achieved, is given as 4.7 kΩ. (4) Conclusion: Due to the compactness and small footprint, simple design, and simple integration with microwave circuits, the proposed rectifier architecture might find several potential applications in wireless RF energy harvesting.


2020 ◽  
Vol 30 (12) ◽  
pp. 1185-1188
Author(s):  
Wenbo Liu ◽  
Kama Huang ◽  
Tao Wang ◽  
Zhuoyue Zhang ◽  
Jing Hou

Author(s):  
Ahmed Al-Khayari ◽  
Hamed Al-Khayari ◽  
Sulaiman Al-Nabhani ◽  
Mohammed M. Bait-Suwailam ◽  
Zia Nadir

Sign in / Sign up

Export Citation Format

Share Document