T-S Fuzzy observer and controller of Doubly-Fed Induction Generator

Author(s):  
Fouad Abdelmalki ◽  
Najat Ouaaline

This paper aims to ensure a stability and observability of doubly fed induction generator DFIG of a wind turbine based on the approach of fuzzy control type T-S PDC (Parallel Distributed Compensation) which determines the control laws by return state and fuzzy observers. First, the fuzzy TS model is used to precisely represent a nonlinear model of DFIG proposed and adopted in this work. Then, the stability analysis is based on the quadratic Lyapunov function to determine the gains that ensure the stability conditions. The fuzzy observer of DFIG is built to estimate non-measurable state vectors and the estimated states converging to the actual statements. The gains of observatory and of stability are obtained by solving a set of linear matrix inequality (LMI). Finally, numerical simulations are performed to verify the theoretical results and demonstrate satisfactory performance.

Author(s):  
Ghulam sarwar Kaloi ◽  
Jie Wang ◽  
Mazhar H Baloch

<p><em> </em><em>     </em>The present paper formulates the state space modeling of doubly fed induction generator (DFIG) based wind turbine system for the purpose of the stability analysis. The objective of this study is to discuss the various modes of operation of the DFIG system under different operating conditions such as voltage sags with reference to variable wind speed and grid connection. The proposed control methodology exploits the potential of the DFIG scheme to avoid that grid voltage unbalances compromise the machine operation, and to compensate voltage unbalances at the point of common coupling (PCC), preventing adverse effects on loads connected next to the PCC. This methodology uses the rotor side converter (RSC) to control the stator current injected through the machine and the GSC to control the stator voltage to minimize the electromagnetic torque oscillations. Extensive simulation results on a 2MW DFIG wind turbine system illustrate the enhanced system performance and verify the effectiveness of the controller.</p>


Author(s):  
Dinh Chung Phan ◽  
Trung Hieu Trinh

This research presents a new scheme to extract the maximal available power from a wind turbine employing a doubly fed induction generator (DFIG). This scheme is developed from the wind turbine’s MPPT-curve. Furthermore, we propose control laws for the rotor and grid side-converters. The stability of the proposed maximum available power method and the control laws are proved mathematically upon Lyapunov’s stability criterion. Their efficiency is tested through the simulations of a DFIG wind turbine in Matlab/Simulink. Simulation results are analyzed and compared with that using a conventional scheme. Thanks to the suggested scheme, the wind turbine can track its maximum power point better and the electric energy output is higher comparing with that using the conventional scheme. Furthermore, by the suggested controllers, the rotor speed and current of the DFIG converged to their desired values. In other words, the wind turbine can achieve stable operations by the suggested control laws.


Author(s):  
SUNIL KUMAR ◽  
NITIN GOEL ◽  
P.R. SHARMA

In this paper steady state characteristic of a variable speed Doubly fed induction generator (DFIG) is investigated. Torque and speed is used as design parameters for DFIG. From mathematical model it is found that on increase of rotor injection voltage and resistance, the torque speed response is shifted from over synchronous to sub synchronous range. The stability of DFIG operation is entirely dependent on torque. The functional relationship of generator further validated using MATLAB and experimental model. DFIG find application mainly in wind energy conversion system.


Author(s):  
Samir Abdelmalek ◽  
Linda Barazane ◽  
Abdelkader Larabi

This paper deals with the problem design of an unknown input observer (UIO) for a Doubly Fed Induction Generator (DFIG) subject to disturbances. These disturbances can be considered as unknown inputs (UI). The state space model of the DFIG is obtained from the voltage equations of the stator and rotor. Then, this latter is used for the design of an unknown input observer (UIO) in order to estimate both the state and the unknown inputs of the DFIG. Furthermore, the UIO gains are computed by solving a set of linear matrix inequalities (LMIs). Simulations results are given to show the performance and the effectiveness of the proposed method.


2017 ◽  
Vol 10 (1) ◽  
pp. 56 ◽  
Author(s):  
Zakaria Sabiri ◽  
Nadia Machkour ◽  
Nabila Rabbah ◽  
Mohammed Nahid ◽  
Elm'kaddem Kheddioui

Sign in / Sign up

Export Citation Format

Share Document