Vibration Analysis of Tapered Pole Linear Switched Reluctance Machine

Author(s):  
Lenin N C ◽  
Arvind S V

The Vibration is one of the major problem in linear switched reluctance motors (LSRMs). This paper present a detailed analysis of vibration in a two phase LSRM and proposes a new structure to reduce the effect. The experimental results of this paper prove that the proposed structure is well suited for conveyor application.

2018 ◽  
Vol 7 (3.15) ◽  
pp. 99
Author(s):  
A Ayob ◽  
S Abd Halim ◽  
Y Yusof

The switched reluctance machine (SRM) is the least expensive machine to produce yet it is very reliable.  An SRM drive system has to be designed so that there is integration between the machine and the converter-controller configuration. This paper focuses on the resistor dump converter topology where most of the energy from the windings is dissipated in a resistor. A detailed analysis and simulation of the converter has been conducted and a design guideline for the proposed converter is laid out.  The resistor dump converter has a low component count and this enables it to achieve a low cost converter.  Simulation results show that for the resistor dump converter additional snubbers are required.  This leads to an increase in complexity of the controller as more parameters need to be considered.  Also, the addition of the passive components of the snubber makes the circuit less reliable and costly. For the purpose of just looking into detail on the behaviour of the converter, it is sufficient to look at the results of the simulation using a static inductor to model the SP-SRM.  If cost is to be the priority, the most economical choice must be made but within limits of the application. 


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4807 ◽  
Author(s):  
Pere Andrada ◽  
Balduí Blanqué ◽  
Eusebi Martínez ◽  
José Ignacio Perat ◽  
José Antonio Sánchez ◽  
...  

This paper investigated the influence of manufacturing and assembly defects and the quality of materials on the performance of an axial-flux switched reluctance machine (AFSRM). An AFSRM drive was designed and built for the in-wheel propulsion of an electric scooter. The motor was tested according to the standard IEC 60349-Part 1, but the obtained results were below the expected result. The causes of the discrepancy between the simulated and experimental results were analyzed. After an exhaustive study, manufacturing and assembly deficiencies and the quality of materials were identified as the main causes of the mentioned discrepancies. Static torque was used to assess the impact of the different causes in these discrepancies. Finally, some recommendations are proposed to improve the construction of this kind of machine.


Sign in / Sign up

Export Citation Format

Share Document