reluctance machine
Recently Published Documents


TOTAL DOCUMENTS

1129
(FIVE YEARS 252)

H-INDEX

39
(FIVE YEARS 7)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 35
Author(s):  
Vítor Fernão Pires ◽  
Armando Cordeiro ◽  
Daniel Foito ◽  
Armando J. Pires

The switched reluctance machine (SRM) is one of the most interesting machines, being adopted for many applications. However, this machine requires a power electronic converter that usually is the most fragile element of the system. Thus, in order to ensure high reliability for this system, it is fundamental to design a power electronic converter with fault-tolerant capability. In this context, a new solution is proposed to give this capability to the system. This converter was designed with the purpose to ensure fault-tolerant capability to two types of switch faults, namely open- and short-circuit. Moreover, apart from this feature, the proposed topology is characterized by a multilevel operation that allows improvement of the performance of the SRM, taking into consideration a wide speed range. Although the proposed solution is presented for an 8/6 SRM, it can be used for other configurations. The operation of the proposed topology will be described for the two modes, fault-tolerant and normal operation. Another aspect that is addressed in this paper is the proposal of fault detection and diagnosis method for this fault-tolerant inverter. It was specifically developed for a multilevel SRM drive. The theoretical assumptions will be verified through two different types of tests, firstly by simulation and secondly by experiments with a laboratory prototype.


Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Federica Uberti ◽  
Lucia Frosini ◽  
Loránd Szabó

A new procedure for the design and optimization of the rotor laminations of a synchronous reluctance machine is presented in this paper. The configuration of the laminations is symmetrical and contains fluid-shaped barriers. The parametrization principle is used, which executes variations in the lamination geometry by changing the position, thickness and shape of the flux barriers. Hence, the optimization procedure analyzes the various configurations through finite element simulations, by means of the communication between MATLAB and Flux 2D. In the post processing stage, the best geometry which optimizes mean torque, torque ripple, efficiency and power factor is selected. Once the best rotor configuration is defined, further investigations allow improving its performance by modifying the current angle, the stator winding and the thickness of the radial ribs.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 228
Author(s):  
Yao Zhao ◽  
Chuanyang Lu ◽  
Dongdong Li ◽  
Xing Zhao ◽  
Fan Yang

The Electrically Excited Doubly Salient Variable Reluctance Machine (EEDSVRM) is a new type of brushless machine designed according to the principle of air gap reluctance change. There is neither permanent magnet steel nor excitation winding on the rotor. The rotor is made of silicon steel sheets, thus the structure of the variable reluctance machine is very simple. There are many optimization methods for this type of machine optimal design, such as novel machine topology optimization, finite element simulation-based optimization, mathematical analysis-based optimization, intelligent algorithm-based optimization, and multiple fusion-based optimization. Firstly, this article introduces the basic structure and working principle of the EEDSVRM and analyzes both its common regularity and individual difference. Then, the different optimization design methods of EEDSVRM are reviewed, the advantages and disadvantages of the different optimization methods are summarized, and the research interests of the optimization design of variable reluctance machines in the future are prospected.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 41
Author(s):  
Hamidreza Ghorbani ◽  
Mohammadreza Moradian ◽  
Mohamed Benbouzid

This paper aims to investigate the reconfigurations of rotor flux barriers for a five-phase Permanent Magnet Assisted Synchronous Reluctance Machine (PMASynRM). To precisely study the performance of the proposed configurations, a conventional PMASynRM with double-layer flux barriers is included in the study. Since the novel rotor schemes consume the same amount of rare-earth magnets, steel sheet materials, and copper wire, resulting in no extra manufacturing costs, the optimal reconfiguration should be determined, providing developed electromagnetic characteristics. Thus, all the proposed models are designed and analyzed under the same condition. The Lumped Parameter Model (LPM) is exported to the Finite Element Method (FEM) for precise analysis to reach developed torque and lower values of torque ripple. Based on the FEM results the model presenting the lowest torque fluctuations is selected as the optimal model and dynamically investigated. According to the results, in comparison with the conventional model, the introduced rotor designs provide a much lower value of torque fluctuations with a desirable amount of electromagnetic torque and power. In addition, the optimal model presents high values of power factor and efficiency, making it a vital alternative for low-torque ripple high-speed operations with no extra cost to the implementation process.


Author(s):  
Jian-Xin Shen ◽  
Shun Cai ◽  
Dong-Min Miao ◽  
Dan Shi ◽  
Jacek Gieras ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhengyuan Gao ◽  
Shanming Wang ◽  
Zhiguo An ◽  
Pengfei Sun

Considerable vibration and acoustic noise limit the further application of Switched Reluctance Machine (SRM) due to its structural characteristics and working principle. An improved SRM model with double auxiliary slots (DAS) was proposed, in which the direction of the magnetic line of force was adjusted, and the radial magnetic density in the air gap was reduced by changing the local tooth profiles of the stator and the rotor. The effects of initial rotor position and turn-on angle and turn-off angle on radial Electromagnetic Force (EMF) and maximum torque were investigated. The results indicate the radial EMF and torque increase significantly with the advancement of the turn-on angle or the delay of the turn-off angle. In the orthogonal experimental design, initial rotor position, turn-on angle, and turn-off angle were taken as the factors, and the optimal set of parameters that minimized radial EMF was determined according to a greater output torque. In contrast to conventional SRM, the radial EMF of the SRM with DAS significantly reduces when the optimal set is applied.


Author(s):  
Ashok Kumar Kolluru ◽  
Malligunta Kiran Kumar

<p>The best alternative machine for synchronous and induction machine is switched reluctance machine for various applications. An artificial neural network (ANN) based vector controller is implemented for novel converter to drive switched reluctance motor (SRM) in this paper. To reduce the cost and simplified the controller an effective configuration of converter is proposed with only 4 pulse-withmodulation (PWM) based switches. The 6 pole stator and 4 pole rotor machine is considered in this paper to present results based on MATLAB. The ripples in torque are reduced by proposing vector controller by using novel configuration of converter. Generally SRM machines are having high ripples in torque, hence less number of switches will be feasible solution to drive the machine in order to reduce ripples. The proposed controller can also help to operate system with less ripples in torque since the controller having both torque and flux hysteresis controllers. The extensive results are presented on Simulink platform to validate the proposed method under both steady state as well as transient conditions.</p>


Author(s):  
Benessalah Djamel ◽  
Houassine Hamza ◽  
Nadir Kabache ◽  
Moussaoui Djeloul

<span lang="EN-US">The interest in synchronous reluctance machine (SynRM) does not stop increasing in recent decades; this is encouraged by their numerous advantages. This paper presents a nonlinear parametric study of the SynRM using finite element method (FEM) method. After a brief introduction and a description of the basic principles of SynRM an investigation and an evaluation of the effects of some influential parameters’ variables of the machine on the torque and magnetic losses is highlighted. The SynRM is created using ANSYS Maxwell software, using 2D FEM. The analyses are performed in the ANSYS Maxwell. The influence of the thickness of the air gap, the opening angle of the rotor, the width and the height of the stator tooth are listed and discussed. The obtained results reveals that the opening angle of the rotor and the air gap produces a large effect over the torque of the SynRM. In order to validate, the finite element model of the studied machine, experimental tests were carried out on designed machine such as the measurement of the synchronous inductance, the torque and the different losses. The experimental results are in agreement with those obtained by FEM.</span>


Sign in / Sign up

Export Citation Format

Share Document