scholarly journals Smart metering system data analytics platform using multicore edge computing

Author(s):  
Juan C. Olivares-Rojas ◽  
Enrique Reyes-Archundia ◽  
José A. Gutiérrez-Gnecchi ◽  
Ismael Molina-Moreno ◽  
Adriana C. Téllez-Anguiano ◽  
...  

The smart grid revolution has only been possible, thanks to the development and proliferation of smart meters. The increasingly growing computing capabilities for Internet of Things devices have made it possible for data to be processed directly from the devices where it is produced; this has been called edge computing. Edge computing is allowing the smart grid to become increasingly intelligent to solve problems that make electricity consumption more efficient and environmentally friendly. This work presents the implementation of a smart metering system that allows data analytics using a multiprocessing architecture directly on the smart meter. The results show that the development of smart meters with data analytics capabilities at the edge is a reality today, and the use of multiprocessing permits the improvement of data processing.

2014 ◽  
Vol 960-961 ◽  
pp. 823-827
Author(s):  
Ying Pan ◽  
Bo Jiang

As an important part of Smart Grid, smart metering attracts more and more attention all over the world. It is the way for energy consumer to sense the benefit of smart grid directly. Smart meter is an advanced energy meter that measures consumption of electrical energy providing additional information compared to a conventional energy meter. This paper discusses various applications and technologies that can be integrated with a smart meter. Smart meters can be used not only from the supply side monitoring but also for the demand side management as well. It plays an important role to monitor the performance and the energy usage of the grid loadings and power quality. In addition, This paper gives a comprehensive view on the benefit of smart metering in power network such as energy efficiency improvement.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 85
Author(s):  
Dr E. Laxmi Lydia ◽  
B Prasanna Kumar ◽  
D Ramya

The Optimal bidirectional flow of the electric power and the communicational data between suppliers and consumers are greatly enabled by the Smart Electricity in Grid. Reliable and Feasible micro energy generated due to Dynamic Energy Management (DEM) and the electricity market by consumers and suppliers. The smart grid features ICCM, aims to bring out the power at reduced cost. Powerful and practical DEM relies on load and sustainable production. Smart meters attain the huge data quantity through practical methods and solutions in this real world working. Smart Grids are enhanced by the operations such as data analytics, giving out high performance estimation, Adequate data network management and cloud computing. This paper aims focusthe issuesin big data and challenges experienced by the Dynamic Energy Management signed in Smart Grid. A detail explanation of data processing techniques that are mostly implemented and It also provides a brief description of the most commonly used data processing methods and recommended proposes a upcoming future directional research in thefield. 


Author(s):  
Jenifer Sunrise Winter

This chapter employs the framework of contextual integrity related to privacy developed by Nissenbaum as a tool to understand consumer response to implementation of residential smart metering technology. To identify and understand specific changes in information practices brought about by the introduction of smart meters, energy consumers were interviewed, read a description of planned smart grid/meter implementation, and were asked to reflect on changes in the key actors involved, information attributes, and principles of transmission. Areas where new practices emerge with the introduction of residential smart meters were then highlighted as potential problems (privacy violations). Issues identified in this study included concern about unauthorized use and sharing of personal data, data leaks or spoofing via hacking, the blurring distinction between the home and public space, and inferences made from new data types aggregated with other personal data that could be used to unjustly discriminate against individuals or groups.


2015 ◽  
Vol 6 (1) ◽  
pp. 45-59 ◽  
Author(s):  
Jenifer Sunrise Winter

This paper employs the framework of contextual integrity related to privacy developed by as a tool to understand citizen response to implementation of residential smart metering technology. To identify and understand specific changes in information practices brought about by the introduction of smart meters, citizens were interviewed, read a description of planned smart grid/meter implementation, and were asked to reflect on changes in the key actors involved, information attributes, and principles of transmission. Areas where new practices emerge with the introduction of the smart grid were then highlighted as potential problems (privacy violations). Issues identified in this study included concern about unauthorized use and sharing of personal data, data leaks or spoofing via hacking, the blurring distinction between the home and public space, and inferences made from new data types aggregated with other personal data that could be used to unjustly discriminate against individuals or groups.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2972 ◽  
Author(s):  
Yuwen Chen ◽  
José-Fernán Martínez ◽  
Pedro Castillejo ◽  
Lourdes López

Smart meters are applied to the smart grid to report instant electricity consumption to servers periodically; these data enable a fine-grained energy supply. However, these regularly reported data may cause some privacy problems. For example, they can reveal whether the house owner is at home, if the television is working, etc. As privacy is becoming a big issue, people are reluctant to disclose this kind of personal information. In this study, we analyzed past studies and found that the traditional method suffers from a meter failure problem and a meter replacement problem, thus we propose a smart meter aggregation scheme based on a noise addition method and the homomorphic encryption algorithm, which can avoid the aforementioned problems. After simulation, the experimental results show that the computation cost on both the aggregator and smart meter side is reduced. A formal security analysis shows that the proposed scheme has semantic security.


Author(s):  
Chien-Ming Chen ◽  
Lili Chen ◽  
Yanyu Huang ◽  
Sachin Kumar ◽  
Jimmy Ming-Tai Wu

AbstractA smart grid (SG) is an advanced power grid system deployed in a cloud center and smart meters (at the consumer end) that provides higher reliability, better data protection, improved power efficiency, automatic monitoring, and effective management of power consumption. However, an SG also poses certain challenges that need to be addressed. For example, data provided by a smart meter are time-sensitive and cannot handle high latency in an SG. Moreover, a smart meter depends on memory, energy, and other factors. Besides, the security between a cloud center and a smart meter is a critical issue that needs to be resolved. Edge computing, an extension of cloud computing deployed in an edge network between a cloud center and the end devices, is an efficient solution to the aforementioned issues. Therefore, in this study, we propose a secure mutual authentication protocol based on edge computing for use in an SG.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 719
Author(s):  
Benjamin Völker ◽  
Andreas Reinhardt ◽  
Anthony Faustine ◽  
Lucas Pereira

The key advantage of smart meters over traditional metering devices is their ability to transfer consumption information to remote data processing systems. Besides enabling the automated collection of a customer’s electricity consumption for billing purposes, the data collected by these devices makes the realization of many novel use cases possible. However, the large majority of such services are tailored to improve the power grid’s operation as a whole. For example, forecasts of household energy consumption or photovoltaic production allow for improved power plant generation scheduling. Similarly, the detection of anomalous consumption patterns can indicate electricity theft and serve as a trigger for corresponding investigations. Even though customers can directly influence their electrical energy consumption, the range of use cases to the users’ benefit remains much smaller than those that benefit the grid in general. In this work, we thus review the range of services tailored to the needs of end-customers. By briefly discussing their technological foundations and their potential impact on future developments, we highlight the great potentials of utilizing smart meter data from a user-centric perspective. Several open research challenges in this domain, arising from the shortcomings of state-of-the-art data communication and processing methods, are furthermore given. We expect their investigation to lead to significant advancements in data processing services and ultimately raise the customer experience of operating smart meters.


Author(s):  
Jenifer Sunrise Winter

This chapter employs the framework of contextual integrity related to privacy developed by Nissenbaum as a tool to understand consumer response to implementation of residential smart metering technology. To identify and understand specific changes in information practices brought about by the introduction of smart meters, energy consumers were interviewed, read a description of planned smart grid/meter implementation, and were asked to reflect on changes in the key actors involved, information attributes, and principles of transmission. Areas where new practices emerge with the introduction of residential smart meters were then highlighted as potential problems (privacy violations). Issues identified in this study included concern about unauthorized use and sharing of personal data, data leaks or spoofing via hacking, the blurring distinction between the home and public space, and inferences made from new data types aggregated with other personal data that could be used to unjustly discriminate against individuals or groups.


2020 ◽  
Vol 12 (8) ◽  
pp. 3442
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Bogdan George Tudorică ◽  
Gabriela Dobrița (Ene)

The smart metered electricity consumption data and high dimensional questionnaires provide useful information for designing the tariffs aimed at reducing electricity consumption and peak. The volume of data generated by smart meters for a sample of around four thousand residential consumers requires Not only Structured Query Language (NoSQL) solutions, data management and artificial neural network clustering algorithms, such as Self-Organizing Maps. In this paper, we propose a novel methodology that handles a large volume of data and extracts information from electricity consumption measured at 30 min and from complex questionnaires. Five three-level Time-of-Use tariffs are altered and investigated to minimize the consumers’ payment. Then, input data analysis revealed that the peak consumption is influenced by a segment of consumers that can be targeted to flatten the peak. Based on simulations, more than 23% of the peak consumption can be reduced by shifting it from peak to off-peak hours.


2021 ◽  
Author(s):  
Chien-Ming Chen ◽  
Lili Chen ◽  
Yanyu Huang ◽  
Sachin Kumar ◽  
Jimmy Ming-Tai Wu

Abstract A smart grid (SG) is an advanced power grid system deployed in a cloud center and smart meters (at the consumer end) that provides higher reliability, better data protection, improved power efficiency, automatic monitoring, and effective management of power consumption. However, an SG also poses certain challenges that need to be addressed. For example, data provided by a smart meter are time-sensitive and cannot handle high latency in an SG. Moreover, a smart meter depends on memory, energy, and other factors. Besides, the security between a cloud center and a smart meter is a critical issue that needs to be resolved. Edge computing, an extension of cloud computing deployed in an edge network between a cloud center and the end devices, is an efficient solution to the aforementioned issues. Therefore, in this study, we propose a secure mutual authentication protocol based on edge computing for use in an SG.


Sign in / Sign up

Export Citation Format

Share Document