Prevention of thrombosis following deep arterial injury in rats by bovine activated protein C requiring co-administration of bovine protein S

2003 ◽  
Vol 90 (08) ◽  
pp. 227-234 ◽  
Author(s):  
Björn Dahlbäck ◽  
Björn Arnljots ◽  
Karl Malm

SummaryThe antithrombotic effect of bovine activated protein C (bAPC) given with or without bovine protein S (bPS) was investigated in a rat model of deep arterial injury. A segment of the left common carotid artery was isolated between vascular clamps and opened longitudinally. An endarterectomy was performed and the arteriotomy was closed with a running suture, whereafter the vessel was reperfused by removing the clamps. The antithrombotic effect (vascular patency rates 31 minutes after reperfusion) and the arteriotomy bleeding were measured. Ten treatment groups each containing 10 rats and a control group of 20 animals were in a blind random fashion given intravenous bolus injections of increasing doses of activated protein C, with or without co-administration of protein S. The groups received either bAPC alone (0.8, 0.4, 0.2 or 0.1 mg/kg), bAPC (0.8, 0.4, 0.2, 0.1 or 0.05 mg/kg) combined with bPS (0.6 mg/kg), or bPS alone (0.6 mg/kg) whereas the control group received vehicle only. Administered alone, bAPC or bPS had no antithrombotic effect, regardless of dosage. In contrast, all groups that were treated with bAPC in combination with bPS demonstrated a significant antithrombotic effect, as compared to controls. Neither bAPC, bPS, nor the combination of bAPC and bPS increased the arteriotomy bleeding significantly compared to controls. In vitro clotting assays using bAPC or bPS alone yielded only minor prolongation of clotting time, whereas bAPC combined with bPS prolonged the clotting time considerably, demonstrating the dependence on the APC-cofactor activity of bPS for expression of anticoagulant activity by bAPC. In conclusion, our study shows the in vivo significance of protein S as a cofactor to activated protein C, and that potent anti-thrombotic effect can be achieved by low doses of bAPC combined with bPS, without producing hemorrhagic side effects.

2012 ◽  
Vol 107 (03) ◽  
pp. 468-476 ◽  
Author(s):  
Ilze Dienava-Verdoold ◽  
Marina R. Marchetti ◽  
Liane C. J. te Boome ◽  
Laura Russo ◽  
Anna Falanga ◽  
...  

SummaryThe natural anticoagulant protein S contains a so-called thrombin-sensitive region (TSR), which is susceptible to proteolytic cleavage. We have previously shown that a platelet-associated protease is able to cleave protein S under physiological plasma conditions in vitro. The aim of the present study was to investigate the relation between platelet-associated protein S cleaving activity and in vivo protein S cleavage, and to evaluate the impact of in vivo protein S cleavage on its anticoagulant activity. Protein S cleavage in healthy subjects and in thrombocytopenic and thrombocythaemic patients was evaluated by immunological techniques. Concentration of cleaved and intact protein S was correlated to levels of activated protein C (APC)-dependent and APC-independent protein S anticoagulant activity. In plasma from healthy volunteers 25% of protein S is cleaved in the TSR. While in plasma there was a clear positive correlation between levels of intact protein S and both APC-dependent and APC-independent protein S anticoagulant activities, these correlations were absent for cleaved protein S. Protein S cleavage was significantly increased in patients with essential thrombocythaemia (ET) and significantly reduced in patients with chemotherapy-induced thrombocytopenia. In ET patients on cytoreductive therapy, both platelet count and protein S cleavage returned to normal values. Accordingly, platelet transfusion restored cleavage of protein S to normal values in patients with chemotherapy-induced thrombocytopenia. In conclusion, proteases from platelets seem to contribute to the presence of cleaved protein S in the circulation and may enhance the coagulation response in vivo by down regulating the anticoagulant activity of protein S.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2704-2704
Author(s):  
Laurent O. Mosnier ◽  
Jose A. Fernandez ◽  
Antonella Zampolli ◽  
Xia V. Yang ◽  
Zaverio M. Ruggeri ◽  
...  

Abstract Activated protein C (APC) has both anticoagulant activity via inactivation of factors Va and VIIIa and cytoprotective activities on cells that include anti-apoptotic and anti-inflammatory activities, alterations of gene expression profiles and protection of endothelial barrier function. The relative importance of APC’s anticoagulant activity vs. APC’s direct cytoprotective effects on cells for reduction of mortality in severe sepsis patients and protective effects in animal injury models is not entirely clear. In this current study, genetically engineered APC variants with different activity spectra were tested for in vivo anti-thrombotic potency. Recently we made a non-anticoagulant APC variant, 5A-APC (RR229/230AA and KKK191-193AAA), that retains normal in vitro cytoprotective effects and an ability to reduce mortality in murine sepsis models (Kerschen et al, ASH2006, J Exper Med, 2007). In contrast to 5A-APC, mutation of E149 to A in APC increased anticoagulant activity in clotting assays while diminishing cytoprotective effects on cells. Murine APC variants, E149A-APC and 5A-APC (KKK192-194AAA + RR230/231AA) were used to determine in vivo anti-thrombotic potency in an acute carotid artery thrombosis model in mice, using FeCl3-induced injury. Under the conditions employed, first occlusion occurred within 3.5 min (mean: 171 sec; range 150-200 sec) in the absence of APC. Murine wild type (wt)-APC effectively delayed time to first occlusion in a dose-dependent manner (0 to 1.8 mg/kg wt-APC; mean: 561 sec; range 400-960 sec). The E149A-APC variant exhibited potent in vivo anti-thrombotic activity (1.8 mg/kg; mean: 1020 sec; range 540- >1600 sec) and was superior to wt-APC as evident by the absence of appreciable occlusion in 2/6 E149A-APC vs. 0/6 wt-APC treated animals. Thus E149A-APC was hyperactive in plasma clotting assays as well as hyperactive in an acute FeCl3-induced arterial thrombosis model. To test the hypothesis that an increased protein S cofactor activity contributed to its enhanced anticoagulant activity, E149A-APC anticoagulant activity was tested in normal and protein S deficient plasma. Compared to wt-APC, E149A-APC showed 3-fold increased anticoagulant activity in normal plasma but not in protein S deficient plasma. In studies with purified proteins, protein S concentrations required for half-maximal stimulation of factor Va inactivation by E149A-APC were 3-fold lower compared to wt-APC, whereas factor Va inactivation rates were indistinguishable in the absence of protein S. These data support our hypothesis that increased protein S cofactor activity is, at least partially, responsible for the observed hyper anticoagulant and anti-thrombotic potency in vitro and in vivo. In contrast to E149A-APC, 5A-APC was severely deficient in anti-thrombotic activity in vivo. Even at concentrations up to 8 mg/kg, 5A-APC (mean: 245 sec; range 172-300 sec) failed to delay significantly time to first occlusion compared to no APC. These data highlight important distinctions between structural requirements for APC’s anticoagulant, anti-thrombotic and cytoprotective functions. Engineered APC variants with differentially altered activities (e.g. cytoprotective vs. anticoagulant) may lead to safer or better therapeutic APC variants for a variety of indications including sepsis, ischemic stroke or other pathologies.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1197-1197
Author(s):  
Rinku Majumder ◽  
Rima Chattopadhyay ◽  
Tanusree Sengupta

Abstract Abstract 1197 Coagulation is a finely tuned process. During thrombin formation, several anticoagulant reactions are initiated to prevent systematic activation of coagulation, and impairment of anticoagulant activity causes an increased risk of venous thrombosis. One such anticoagulant factor is protein S, deficiencies of which have been linked to venous and arterial thrombosis. While protein S has been studied for over three decades, the precise role this protein plays in attenuating the hemostatic response is far from clear. Protein S is a vitamin K-dependent plasma protein that functions in feedback regulation of thrombin generation. Protein S was initially identified as a cofactor for activated protein C (APC) but later it was observed that there is only a 3–10 fold increase in APC activity in the presence of protein S. Plasma coagulation assays in the absence of APC suggest that protein S may have other anticoagulant role(s). We report here an anticoagulant activity of Protein S mediated by inhibition of fIXa in the absence and presence of fVIIIa independent of APC. Although an APC-independent anticoagulant activity has been reported for protein S interacting with fVIIIa, no study has shown that the inhibitory effect of protein S is mediated through its interaction with fIXa, thus making our observations novel and significant. Moreover, previous studies that reported an interaction between fVIIIa and protein S were performed with low amounts of phospholipid, a condition that produces activity measurement artifacts due to the presence of active protein S multimers. We used both ex vivo (plasma studies) and in vitro methods at high phospholipid (100–200 micro molar) concentration to determine whether and how the intrinsic pathway of blood coagulation is regulated by protein S. We obtained the following results: 1) activated partial thromboplastin time (aPTT) assays with protein S-supplemented plasma confirmed that protein S prolongs clotting time, and a normal clotting time was restored with addition of anti-protein S antibody, 2) a modified aPPT assay with fIX-deficient plasma confirmed that protein S affects fIX-initiated clotting time, 3) thrombin generation assay through fIXa/fVIIIa pathway, initiated with a limiting amount of tissue factor (TF), was regulated by protein S, 4) in vitro studies with fIXa/fVIIIa and protein S in the presence of phosphatidylserine (PS) vesicles showed ∼40% and ∼65% inhibition in the activity of fIXa in the absence and presence of fVIIIa, respectively, and 5) protein S altered only the KM for fX activation by fIXa but altered both kcat and KM for fX activation by fIXa and fVIIIa. Our findings underscore the central role of protein S in regulation of coagulation. We anticipate these results will unravel important implications for the evaluation of thrombotic risk associated with protein S-deficiency. Disclosures: No relevant conflicts of interest to declare.


1988 ◽  
Vol 60 (02) ◽  
pp. 298-304 ◽  
Author(s):  
C A Mitchell ◽  
S M Kelemen ◽  
H H Salem

SummaryProtein S (PS) is a vitamin K-dependent anticoagulant that acts as a cofactor to activated protein C (APC). To date PS has not been shown to possess anticoagulant activity in the absence of APC.In this study, we have developed monoclonal antibody to protein S and used to purify the protein to homogeneity from plasma. Affinity purified protein S (PSM), although identical to the conventionally purified protein as judged by SDS-PAGE, had significant anticoagulant activity in the absence of APC when measured in a factor Xa recalcification time. Using SDS-PAGE we have demonstrated that prothrombin cleavage by factor X awas inhibited in the presence of PSM. Kinetic analysis of the reaction revealed that PSM competitively inhibited factor X amediated cleavage of prothrombin. PS preincubated with the monoclonal antibody, acquired similar anticoagulant properties. These results suggest that the interaction of the monoclonal antibody with PS results in an alteration in the protein exposing sites that mediate the observed anticoagulant effect. Support that the protein was altered was derived from the observation that PSM was eight fold more sensitive to cleavage by thrombin and human neutrophil elastase than conventionally purified protein S.These observations suggest that PS can be modified in vitro to a protein with APC-independent anticoagulant activity and raise the possibility that a similar alteration could occur in vivo through the binding protein S to a cellular or plasma protein.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1594-1595
Author(s):  
Rie Takeuchi ◽  
Tatsuya Atsumi ◽  
Masahiro Ieko ◽  
Hiroyuki Takeya ◽  
Shinsuke Yasuda ◽  
...  

β2-Glycoprotein I (β2GPI) is a major antigen for antiphospholipid antibodies, and its multiple in vitro functions have been reported. This glycoprotein not only down-regulates thrombin formation by inhibiting contact activation or prothrombinase activity, but also up-regulates coagulation by reducing protein C anticoagulant activity. However, the in vivo roles of β2GPI remain obscure. Coagulation and fibrinolytic characteristics were investigated in individuals with β2GPI deficiency. An apparently healthy woman and her brother are homozygotes for β2GPI deficiency. In these patients, Russell viper venom time was shortened (40.4 seconds; normal range, 47.8 ± 4.95 seconds), but all markers of thrombin generation and fibrin turnover were within normal ranges. Exogenous activated protein C adequately prolonged the clotting time of the β2GPI-deficient plasma, and euglobulin lysis time was also normal. Thus, elevated thrombin generation, enhancement of activated protein C response, and an altered fibrinolytic system were not found in congenitally β2GPI-deficient plasma.


Blood ◽  
2009 ◽  
Vol 113 (23) ◽  
pp. 5970-5978 ◽  
Author(s):  
Laurent O. Mosnier ◽  
Antonella Zampolli ◽  
Edward J. Kerschen ◽  
Reto A. Schuepbach ◽  
Yajnavalka Banerjee ◽  
...  

Abstract Activated protein C (APC) reduces mortality in severe sepsis patients. APC exerts anticoagulant activities via inactivation of factors Va and VIIIa and cytoprotective activities via endothelial protein C receptor and protease-activated receptor-1. APC mutants with selectively altered and opposite activity profiles, that is, greatly reduced anticoagulant activity or greatly reduced cytoprotective activities, are compared here. Glu149Ala-APC exhibited enhanced in vitro anticoagulant and in vivo antithrombotic activity, but greatly diminished in vitro cytoprotective effects and in vivo reduction of endotoxin-induced murine mortality. Thus, residue Glu149 and the C-terminal region of APC's light chain are identified as functionally important for expression of multiple APC activities. In contrast to Glu149Ala-APC, 5A-APC (Lys191-193Ala + Arg229/230Ala) with protease domain mutations lacked in vivo antithrombotic activity, although it was potent in reducing endotoxin-induced mortality, as previously shown. These data imply that APC molecular species with potent antithrombotic activity, but without robust cytoprotective activity, are not sufficient to reduce mortality in endotoxemia, emphasizing the need for APC's cytoprotective actions, but not anticoagulant actions, to reduce endotoxin-induced mortality. Protein engineering can provide APC mutants that permit definitive mechanism of action studies for APC's multiple activities, and may also provide safer and more effective second-generation APC mutants with reduced bleeding risk.


2012 ◽  
Vol 107 (04) ◽  
pp. 690-698 ◽  
Author(s):  
Ulla Marzec ◽  
Andras Gruber ◽  
Stephen R. Hanson ◽  
Mary J. Heeb

SummaryProtein S (ProS) is an essential plasma protein that enhances the anticoagulant activity of activated protein C (APC). In vitro, purified native human Zn2+-containing ProS also exerts direct anticoagulant activity by inhibiting prothrombinase and extrinsic FXase activities independently of APC. We investigated antithrombotic effects of ProS infused without APC in a baboon shunt model of thrombogenesis that employs a device consisting of arterial and venous shear flow segments. In in vitro experiments, the Zn2+-containing human ProS used for the studies displayed >10-fold higher prothrombinase inhibitory activity and anticoagulant activity in tissue factor-stimulated plasma, and four-fold higher inhibition of the intrinsic pathway than the Zn2+-deficient ProS used. In the thrombosis model, ProS (33 μg/minute for 1 hour) or saline was infused locally; platelet and fibrin deposition in the shunt were measured over 2 hours. During experiments performed at 50 ml/minute blood flow, Zn2+-containing ProS inhibited platelet deposition 73–96% in arterialtype flow segments and 90–99% in venous-type flow segments; Zn2+-deficient ProS inhibited platelet deposition 52% in arterial-type flow segments and 65–73% in venous-type flow segments. At 100 ml/min blood flow rate, Zn2+-containing ProS inhibited platelet deposition by 39% and 73% in the respective segments; Zn2+-deficient ProS inhibited platelet deposition by 5% and 0% in the respective segments. Zn2+-containing ProS suppressed fibrin deposition by 67–90%. Systemic APC-independent ProS activity was significantly increased and thrombin-antithrombin complex levels were significantly decreased after infusion of ProS. Thus, infused human Zn2+-containing ProS is antithrombotic in primates, and may have therapeutic potential even in protein C-deficient human patients.These studies were presented in part in abstract form at an oral presentation at the XXIth Congress of the International Society on Thrombosis and Haemo -stasis, Geneva, Switzerland, August 2007.


1996 ◽  
Vol 75 (01) ◽  
pp. 049-055 ◽  
Author(s):  
Tatsuyuki Mori ◽  
Hiroyuki Takeya ◽  
Junji Nishioka ◽  
Esteban C Gabazza ◽  
Koji Suzuki

SummaryThe objective of this study was to determine whether (β2-glycoprotein I (β2GPI) has procoagulant activity by inhibiting the anticoagulant activity of activated protein C (APC). β2GPI inhibited significantly the APC-catalyzed inactivation of factor Va in an assay using factor V-deficient plasma and physiological levels of protein S and factor Va. This inhibitory effect was diminished by the addition of increasing concentrations of phospholipids, suggesting that β2GPI competitively inhibits the binding of APC to the phospholipid surface. β2GPI inhibited weakly factor Va- and phospholipid-dependent prothrombinase activity at concentrations similar to those to inhibit APC activity. The depletion of β2GPI from plasma led to only a slight shortening of the diluted Russell’s viper venom-dependent clotting time, but to a strong and significant potentiation of the anticoagulant activity of APC. These results suggest that under certain physiological conditions β2GPI has procoagulant property by inhibiting the phospholipid-dependent APC anticoagulant activity.


Blood ◽  
1991 ◽  
Vol 77 (10) ◽  
pp. 2174-2184 ◽  
Author(s):  
H Jr Berger ◽  
CG Kirstein ◽  
CL Orthner

Abstract Protein C is a vitamin K-dependent zymogen of the serine protease, activated protein C (APC), an important regulatory enzyme in hemostasis. In view of the potential of human APC as an anticoagulant and profibrinolytic agent, the pharmacokinetics and tissue distribution of APC were studied in guinea pigs. The plasma elimination of a trace dose of 125I-APC was biphasic following an initial rapid elimination of approximately 15% of the injected dose within 1 to 2 minutes. This rapid removal of 125I-APC from the circulation was found to be a result of an association with the liver regardless of the route of injection. Essentially identical results were obtained with active site-blocked forms of APC generated with either diisopropylfluorophosphate or D- phenylalanyl-L-prolyl-L-arginine chloromethyl ketone, which indicates that the active site was not essential for the liver association. Accumulation of all three forms of APC in the liver peaked at 30 minutes and then declined as increasing amounts of degraded radiolabeled material appeared in the gastrointestinal tract and urine. Removal of the gamma-carboxyglutamic acid (gla) domain of diisopropylphosphoryl-APC resulted in a 50% reduction in the association with liver and an accumulation in the kidneys. Protein C and protein S were cleared from the circulation at rates approximately one-half and one-fourth, respectively, that of APC. Both in vitro and in vivo, APC was found to form complexes with protease inhibitors present in guinea pig plasma. Complex formation resulted in a more rapid disappearance of the enzymatic activity of APC than elimination of the protein moiety. These findings indicate two distinct mechanisms for the elimination of APC. One mechanism involves reaction with plasma protease inhibitors and subsequent elimination by specific hepatic receptors. The other mechanism involves the direct catabolism of APC by the liver via a pathway that is nonsaturable over a substantial dose range and independent of the active site. This pattern of elimination is distinctly different from that observed with the homologous coagulation enzymes thrombin, factor IXa, and factor Xa.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1594-1595 ◽  
Author(s):  
Rie Takeuchi ◽  
Tatsuya Atsumi ◽  
Masahiro Ieko ◽  
Hiroyuki Takeya ◽  
Shinsuke Yasuda ◽  
...  

Abstract β2-Glycoprotein I (β2GPI) is a major antigen for antiphospholipid antibodies, and its multiple in vitro functions have been reported. This glycoprotein not only down-regulates thrombin formation by inhibiting contact activation or prothrombinase activity, but also up-regulates coagulation by reducing protein C anticoagulant activity. However, the in vivo roles of β2GPI remain obscure. Coagulation and fibrinolytic characteristics were investigated in individuals with β2GPI deficiency. An apparently healthy woman and her brother are homozygotes for β2GPI deficiency. In these patients, Russell viper venom time was shortened (40.4 seconds; normal range, 47.8 ± 4.95 seconds), but all markers of thrombin generation and fibrin turnover were within normal ranges. Exogenous activated protein C adequately prolonged the clotting time of the β2GPI-deficient plasma, and euglobulin lysis time was also normal. Thus, elevated thrombin generation, enhancement of activated protein C response, and an altered fibrinolytic system were not found in congenitally β2GPI-deficient plasma.


Sign in / Sign up

Export Citation Format

Share Document