platelet deposition
Recently Published Documents


TOTAL DOCUMENTS

373
(FIVE YEARS 10)

H-INDEX

44
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Mingyan Wang ◽  
Wei Zhang ◽  
Zhi Qi

Platelets deposition at the site of vascular injury is a key event for the arrest of bleeding and for subsequent vascular repair. Therefore, the regulation of platelet deposition onto the injured site during the process of platelet plug formation is an important event. Herein, we showed that electrical signal could regulate the deposition of platelets onto the injured site. On the one hand, the area of platelet deposition was reduced when the cathode of the applied electric field was placed at the injured site beforehand, while it was increased when the anode was at the site. On the other hand, if a cathode was placed at the injured site after the injury, the electrical signal could remove the outer layer of the deposited platelets. Furthermore, an electric field could drive rapid platelet deposition onto the blood vessel wall at the site beneath the anode even in uninjured blood vessels. Platelet deposition could thus be manipulated by externally applied electric field, which might provide a mechanism to drive platelet deposition onto the wall of blood vessels.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0255114
Author(s):  
László Hidi ◽  
Erzsébet Komorowicz ◽  
Gergely Imre Kovács ◽  
Zoltán Szeberin ◽  
Dávid Garbaisz ◽  
...  

Introduction Management of vascular infections represents a major challenge in vascular surgery. The use of cryopreserved vascular allografts could be a feasible therapeutic option, but the optimal conditions for their production and use are not precisely defined. Aims To evaluate the effects of cryopreservation and the duration of storage on the thrombogenicity of femoral artery allografts. Methods In our prospective study, eleven multi-organ-donation-harvested human femoral arteries were examined at five time points during storage at -80°C: before cryopreservation as a fresh native sample and immediately, one, twelve and twenty-four weeks after the cryopreservation. Cross-sections of allografts were perfused with heparin-anticoagulated blood at shear-rates relevant to medium-sized arteries. The deposited platelets and fibrin were immunostained. The thrombogenicity of the intima, media and adventitia layers of the artery grafts was assessed quantitatively from the relative area covered by fibrin- and platelet-related fluorescent signal in the confocal micrographs. Results Regression analysis of the fibrin and platelet coverage in the course of the 24-week storage excluded the possibility for increase in the graft thrombogenicity in the course of time and supported the hypothesis for a descending trend in fibrin generation and platelet deposition on the arterial wall. The fibrin deposition in the cryopreserved samples did not exceed the level detected in any of the three layers of the native graft. However, an early (up to week 12) shift above the native sample level was observed in the platelet adhesion to the media. Conclusions The hemostatic potential of cryopreserved arterial allografts was retained, whereas their thrombogenic potential declined during the 6-month storage. The only transient prothrombotic change was observed in the media layer, where the platelet deposition exceeded that of the fresh native grafts in the initial twelve weeks after cryopreservation, suggesting a potential clinical benefit from antiplatelet therapy in this time-window.


2021 ◽  
Vol 47 (02) ◽  
pp. 129-138
Author(s):  
Karin Leiderman ◽  
Suzanne S. Sindi ◽  
Dougald M. Monroe ◽  
Aaron L. Fogelson ◽  
Keith B. Neeves

AbstractComputational models of various facets of hemostasis and thrombosis have increased substantially in the last decade. These models have the potential to make predictions that can uncover new mechanisms within the complex dynamics of thrombus formation. However, these predictions are only as good as the data and assumptions they are built upon, and therefore model building requires intimate coupling with experiments. The objective of this article is to guide the reader through how a computational model is built and how it can inform and be refined by experiments. This is accomplished by answering six questions facing the model builder: (1) Why make a model? (2) What kind of model should be built? (3) How is the model built? (4) Is the model a “good” model? (5) Do we believe the model? (6) Is the model useful? These questions are answered in the context of a model of thrombus formation that has been successfully applied to understanding the interplay between blood flow, platelet deposition, and coagulation and in identifying potential modifiers of thrombin generation in hemophilia A.


Author(s):  
Phillip D McMullen ◽  
Joseph H Cho ◽  
Jonathan L Miller ◽  
Aliya N Husain ◽  
Peter Pytel ◽  
...  

Abstract Objectives Pulmonary platelet deposition and microangiopathy are increasingly recognized components of coronavirus disease 2019 (COVID-19) infection. Thrombosis is a known component of sepsis and disseminated intravascular coagulation. We sought to compare the level of platelet deposition in the pulmonary vasculature in cases of confirmed COVID-19 infection to other lung injuries and infections. Methods Immunohistochemistry was performed on 27 autopsy cases and 2 surgical pathology cases targeting CD61. Multiple cases of normal lung, diffuse alveolar damage, COVID-19, influenza, and bacterial and fungal infections, as well as one case of pulmonary emboli, were included. The levels of CD61 staining were compared quantitatively in the autopsy cases, and patterns of staining were described. Results Nearly all specimens exhibited an increase in CD61 staining relative to control lung tissue. The area of CD61 staining in COVID-19 infection was higher than influenza but still comparable to many other infectious diseases. Cases of aspiration pneumonia, Staphylococcus aureus infection, and blastomycosis exhibited the highest levels of CD61 staining. Conclusions Platelet deposition is a phenomenon common to many pulmonary insults. A spectrum of staining patterns was observed, suggestive of pathogen-specific mechanisms of platelet deposition. Further study into the mechanisms driving platelet deposition in pulmonary injuries and infections is warranted.


2020 ◽  
Vol 21 (19) ◽  
pp. 7171
Author(s):  
Klytaimnistra Kiouptsi ◽  
Sven Jäckel ◽  
Eivor Wilms ◽  
Giulia Pontarollo ◽  
Jana Winterstein ◽  
...  

The commensal microbiota is a recognized enhancer of arterial thrombus growth. While several studies have demonstrated the prothrombotic role of the gut microbiota, the molecular mechanisms promoting arterial thrombus growth are still under debate. Here, we demonstrate that germ-free (GF) mice, which from birth lack colonization with a gut microbiota, show diminished static deposition of washed platelets to type I collagen compared with their conventionally raised (CONV-R) counterparts. Flow cytometry experiments revealed that platelets from GF mice show diminished activation of the integrin αIIbβ3 (glycoprotein IIbIIIa) when activated by the platelet agonist adenosine diphosphate (ADP). Furthermore, washed platelets from Toll-like receptor-2 (Tlr2)-deficient mice likewise showed impaired static deposition to the subendothelial matrix component type I collagen compared with wild-type (WT) controls, a process that was unaffected by GPIbα-blockade but influenced by von Willebrand factor (VWF) plasma levels. Collectively, our results indicate that microbiota-triggered steady-state activation of innate immune pathways via TLR2 enhances platelet deposition to subendothelial matrix molecules. Our results link host colonization status with the ADP-triggered activation of integrin αIIbβ3, a pathway promoting platelet deposition to the growing thrombus.


2020 ◽  
Vol 193 ◽  
pp. 15-21
Author(s):  
Mercedes López ◽  
Stefan Heitmeier ◽  
Volker Laux ◽  
Goetz Nowak

2020 ◽  
Vol 4 (2) ◽  
pp. 205-216 ◽  
Author(s):  
Michael Wallisch ◽  
Christina U. Lorentz ◽  
Hari H. S. Lakshmanan ◽  
Jennifer Johnson ◽  
Marschelle R. Carris ◽  
...  

2020 ◽  
Vol 44 (5) ◽  
pp. 465-472
Author(s):  
Guang‐mao Liu ◽  
Yan Zhang ◽  
Hai‐bo Chen ◽  
Jian‐feng Hou ◽  
Dong‐hai Jin ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 750 ◽  
Author(s):  
Mariangela Scavone ◽  
Silvia Bozzi ◽  
Tatiana Mencarini ◽  
Gianmarco Podda ◽  
Marco Cattaneo ◽  
...  

Microfluidic flow chambers (MFCs) allow the study of platelet adhesion and thrombus formation under flow, which may be influenced by several variables. We developed a new MFC, with which we tested the effects of different variables on the results of platelet deposition and thrombus formation on a collagen-coated surface. Methods: Whole blood was perfused in the MFC over collagen Type I for 4 min at different wall shear rates (WSR) and different concentrations of collagen-coating solutions, keeping blood samples at room temperature or 37 °C before starting the experiments. In addition, we tested the effects of the antiplatelet agent acetylsalicylic acid (ASA) (antagonist of cyclooxygenase-1, 100 µM) and cangrelor (antagonist of P2Y12, 1 µM). Results: Platelet deposition on collagen (I) was not affected by the storage temperature of the blood before perfusion (room temperature vs. 37 °C); (II) was dependent on a shear rate in the range between 300/s and 1700/s; and (III) was influenced by the collagen concentration used to coat the microchannels up to a value of 10 µg/mL. ASA and cangrelor did not cause statistically significant inhibition of platelet accumulation, except for ASA at low collagen concentrations. Conclusions: Platelet deposition on collagen-coated surfaces is a shear-dependent process, not influenced by the collagen concentration beyond a value of 10 µg/mL. However, the inhibitory effect of antiplatelet drugs is better observed using low concentrations of collagen.


Sign in / Sign up

Export Citation Format

Share Document