Effect of Lithium Disilicate Veneers of Different Thickness on the Degree of Conversion and Microhardness of a Light-Curing and a Dual-Curing Cement

2016 ◽  
Vol 29 (4) ◽  
pp. 384-388 ◽  
Author(s):  
Nicola Scotti ◽  
Allegra Comba ◽  
Milena Cadenaro ◽  
Luca Fontanive ◽  
Lorenzo Breschi ◽  
...  



Author(s):  
Gianpaolo Serino ◽  
Allegra Comba ◽  
Andrea Baldi ◽  
Massimo Carossa ◽  
Paolo Baldissara ◽  
...  


2020 ◽  
Author(s):  
RQ Ramos ◽  
RR Moraes ◽  
GC Lopes

Clinical Relevance The use of multipeak LED light-curing guarantees efficiency on light activation of Ivocerin-containing light-cured resin cement.



Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 470
Author(s):  
Andrea Kowalska ◽  
Jerzy Sokolowski ◽  
Kinga Bociong

The presented paper concerns current knowledge of commercial and alternative photoinitiator systems used in dentistry. It discusses alternative and commercial photoinitiators and focuses on mechanisms of polymerization process, in vitro measurement methods and factors influencing the degree of conversion and hardness of dental resins. PubMed, Academia.edu, Google Scholar, Elsevier, ResearchGate and Mendeley, analysis from 1985 to 2020 were searched electronically with appropriate keywords. Over 60 articles were chosen based on relevance to this review. Dental light-cured composites are the most common filling used in dentistry, but every photoinitiator system requires proper light-curing system with suitable spectrum of light. Alternation of photoinitiator might cause changing the values of biomechanical properties such as: degree of conversion, hardness, biocompatibility. This review contains comparison of biomechanical properties of dental composites including different photosensitizers among other: camphorquinone, phenanthrenequinone, benzophenone and 1-phenyl-1,2 propanedione, trimethylbenzoyl-diphenylphosphine oxide, benzoyl peroxide. The major aim of this article was to point out alternative photoinitiators which would compensate the disadvantages of camphorquinone such as: yellow staining or poor biocompatibility and also would have mechanical properties as satisfactory as camphorquinone. Research showed there is not an adequate photoinitiator which can be as sufficient as camphorquinone (CQ), but alternative photosensitizers like: benzoyl germanium or novel acylphosphine oxide photoinitiators used synergistically with CQ are able to improve aesthetic properties and degree of conversion of dental resin.



2017 ◽  
Vol 28 (5) ◽  
pp. 632-637 ◽  
Author(s):  
André L. Faria-e-Silva ◽  
Christopher Fanger ◽  
Lillian Nguyen ◽  
Demetri Howerton ◽  
Carmem S. Pfeifer

Abstract This study aimed to evaluate the effect of the composite shade and distance from the light-curing unit (LCU) tip on the irradiance reaching the bottom of composite disks and on the depth of polymerization. Composites of three shades (opaque - OXDC, bleach - BXL, and A2) were inserted into molds with 3-mm of thickness positioned over a spectrometer and photo-activated with the LCU (Bluephase) tip placed at 0 or 1 cm from the composite surface. The mean irradiance reaching the bottom of composite was recorded during the entire photo-activation (30 s). Specimens (2 x 2 x 4 mm) were polymerized and used to map the degree of conversion achieved in different depths from irradiated surface. Specimens were sectioned into slices that were positioned over the platform of the infra-red microscope connected to the spectrometer to map the conversion. The conversion was measured in eight different depths every 500-µm. Increasing the distance of LCU tip reduced the irradiance only for A2. Interposing OXDC disks resulted in lowest values of irradiance and A2 the highest one. A tendency to decrease the conversion was observed towards the bottom of specimens for all experimental conditions, and the slope was more accentuated for OXDC. Differences among shades and distances from LCU tip were evident only beyond 1.5-2.0 mm of depth. In conclusion, both composite shade and distance from LCU tip might affect the light-transmission and depth of polymerization, while the effect of last was more pronounced.



2018 ◽  
Vol 43 (6) ◽  
pp. E280-E287 ◽  
Author(s):  
JS Shim ◽  
SH Han ◽  
N Jha ◽  
ST Hwang ◽  
W Ahn ◽  
...  

SUMMARY This study investigated the effects of irradiance and exposure duration on dual-cured resin cements irradiated through ceramic restorative materials. A single light-curing unit was calibrated to three different irradiances (500, 1000, and 1500 mW/cm2) and irradiated to three different attenuating materials (transparent acryl, lithium disilicate, zirconia) with 1-mm thicknesses for 20 or 60 seconds. The changes in irradiance and temperature were measured with a radiometer (or digital thermometer) under the attenuating materials. The degree of conversion (DC) of dual-cure resin cement after irradiation at different irradiances and exposure durations was measured with Fourier transform near infrared spectroscopy. Two-way analysis of variance revealed that irradiance (p<0.001) and exposure duration (p<0.001) significantly affected temperature and DC. All groups showed higher DCs with increased exposure times (p<0.05), but there were no statistically significant differences between the groups irradiated with 1000 mW/cm2 and 1500 mW/cm2 (p>0.05). Higher-intensity irradiances yielded higher temperatures (p<0.05), but exposure time did not affect temperature when materials were irradiated at 500 mW/cm2 (p>0.05).



2017 ◽  
Vol 25 (2) ◽  
pp. 140-146 ◽  
Author(s):  
Kelly Antonieta Oliveira Rodrigues de Faria CARDOSO ◽  
Driellen Christine ZARPELLON ◽  
Camila Ferreira Leite MADRUGA ◽  
José Augusto RODRIGUES ◽  
Cesar Augusto Galvão ARRAIS


2020 ◽  
pp. e1117-e1123
Author(s):  
F. Tsuzuki ◽  
L. de Castro-Hoshino ◽  
L. Lopes ◽  
F. Sato ◽  
M. Baesso ◽  
...  


2021 ◽  
Vol 20 ◽  
pp. e211656
Author(s):  
Gabriela Alves de Cerqueira ◽  
Lais Sampaio Souza ◽  
Rafael Soares Gomes ◽  
Giselle Maria Marchi ◽  
Paula Mathias

Aim: This study evaluated the water sorption and solubility of a light-cured resin cement, under four thicknesses and four opacities of a lithium disilicate ceramic, also considering three light-emitting diode (LED) units. Methods: A total of 288 specimens of a resin cement (AllCem Veneer Trans – FGM) were prepared, 96 samples were light-cured by each of the three light curing units (Valo – Ultradent / Radii-Cal – SDI / Bluephase II – Ivoclar Vivadent), divided into 16 experimental conditions, according to the opacities of the ceramic: High Opacity (HO), Medium Opacity (MO), Low Translucency (LT), High Translucency (HT), and thicknesses (0.3, 0.8, 1.5, and 2.0 mm) (n = 6). The specimens were weighed at three different times: Mass M1 (after making the specimens), M2 (after 7 days of storage in water), and M3 (after dissection cycle), for calculating water sorption and solubility. Results: The higher thickness of the ceramic (2.0 mm) significantly increased the values of water sorption (44.0± 4.0) and solubility (7.8±0.6), compared to lower thicknesses. Also, the ceramic of higher opacity (HO) generated the highest values of sorption and solubility when compared to the other opacities, regardless of the thickness tested (ANOVA-3 factors / Tukey’s test, α = 0.05). There was no influence of light curing units. Conclusion: Higher thicknesses and opacities of the ceramic increased the water sorption and solubility of the tested light-cured resin cement.



Sign in / Sign up

Export Citation Format

Share Document