Abstract 383: Patient-Specific Coronary Models Combining Intravascular Ultrasound and Optical Coherence Tomography Lead to More Accurate Plaque Cap Thickness and Stress/Strain Quantifications

2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Xiaoya Guo ◽  
David Monoly ◽  
Chun Yang ◽  
Habib Samady ◽  
Jie Zheng ◽  
...  

Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. An innovative modeling approach combining intravascular ultrasound (IVUS) and optical coherence tomography (OCT) is introduced for more accurate patient-specific coronary morphology and stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired from two patients with informed consent obtained. IVUS and OCT images were segmented, co-registered, and merged to form the IVUS+OCT data set, with OCT providing accurate cap thickness. Biplane angiography provided 3D vessel curvature. Due to IVUS resolution (150 μm), original virtual histology (VH) IVUS data often had lipid core exposed to lumen since it sets cap thickness as zero when cap thickness <150 μm. VH-IVUS data were processed with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for modeling use. 3D fluid-structure interaction models based on IVUS+OCT, IVUS50 and IVUS180 data sets were constructed to investigate the impact of OCT cap thickness improvement on stress/strain calculations. Figure 1 is a brief summary of results from 27 slices with cap covering lipid cores from 2 patients. Mean cap thickness (unit: mm) from Patient 1 was 0.353 (OCT), 0.201 (IVUS50), and 0.329 (IVUS180), respectively. Patient 2 mean cap thickness was 0.320 (OCT), 0.224 (IVUS50), and 0.285 (IVUS180). IVUS50 underestimated cap thickness (27 slices) by 34.5%, compared to OCT cap values. IVUS50 overestimated mean cap stress (27 slices) by 45.8%, compared to OCT cap stress (96.4 vs. 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS+OCT model (564.2 vs. 354.5 kPa). Differences between IVUS and IVUS+OCT models for mean cap strain and flow shear stress were modest (cap strain: <12%; FSS <2%). Conclusion: IVUS+OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for plaque research.

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Xiaoya Guo ◽  
Don P. Giddens ◽  
David Molony ◽  
Chun Yang ◽  
Habib Samady ◽  
...  

Accurate cap thickness and stress/strain quantifications are of fundamental importance for vulnerable plaque research. Virtual histology intravascular ultrasound (VH-IVUS) sets cap thickness to zero when cap is under resolution limit and IVUS does not see it. An innovative modeling approach combining IVUS and optical coherence tomography (OCT) is introduced for cap thickness quantification and more accurate cap stress/strain calculations. In vivo IVUS and OCT coronary plaque data were acquired with informed consent obtained. IVUS and OCT images were merged to form the IVUS + OCT data set, with biplane angiography providing three-dimensional (3D) vessel curvature. For components where VH-IVUS set zero cap thickness (i.e., no cap), a cap was added with minimum cap thickness set as 50 and 180 μm to generate IVUS50 and IVUS180 data sets for model construction, respectively. 3D fluid–structure interaction (FSI) models based on IVUS + OCT, IVUS50, and IVUS180 data sets were constructed to investigate cap thickness impact on stress/strain calculations. Compared to IVUS + OCT, IVUS50 underestimated mean cap thickness (27 slices) by 34.5%, overestimated mean cap stress by 45.8%, (96.4 versus 66.1 kPa). IVUS50 maximum cap stress was 59.2% higher than that from IVUS + OCT model (564.2 versus 354.5 kPa). Differences between IVUS and IVUS + OCT models for cap strain and flow shear stress (FSS) were modest (cap strain <12%; FSS <6%). IVUS + OCT data and models could provide more accurate cap thickness and stress/strain calculations which will serve as basis for further plaque investigations.


Author(s):  
Rui Lv ◽  
Akiko Maehara ◽  
Mitsuaki Matsumura ◽  
Liang Wang ◽  
Caining Zhang ◽  
...  

Accurate plaque cap thickness quantification and cap stress/strain calculations are of fundamental importance for vulnerable plaque research. To overcome uncertainties due to intravascular ultrasound (IVUS) resolution limitation, IVUS and optical coherence tomography (OCT) coronary plaque image data were combined together to obtain accurate and reliable cap thickness data, stress/strain calculations, and reliable plaque progression predictions. IVUS, OCT, and angiography baseline and follow-up data were collected from nine patients (mean age: 69; m: 5) at Cardiovascular Research Foundation with informed consent obtained. IVUS and OCT slices were coregistered and merged to form IVUS + OCT (IO) slices. A total of 114 matched slices (IVUS and OCT, baseline and follow-up) were obtained, and 3D thin-layer models were constructed to obtain stress and strain values. A generalized linear mixed model (GLMM) and least squares support vector machine (LSSVM) method were used to predict cap thickness change using nine morphological and mechanical risk factors. Prediction accuracies by all combinations (511) of those predictors with both IVUS and IO data were compared to identify optimal predictor(s) with their best accuracies. For the nine patients, the average of minimum cap thickness from IVUS was 0.17 mm, which was 26.08% lower than that from IO data (average = 0.23 mm). Patient variations of the individual errors ranged from ‒58.11 to 20.37%. For maximum cap stress between IO and IVUS, patient variations of the individual errors ranged from ‒30.40 to 46.17%. Patient variations of the individual errors of maximum cap strain values ranged from ‒19.90 to 17.65%. For the GLMM method, the optimal combination predictor using IO data had AUC (area under the ROC curve) = 0.926 and highest accuracy = 90.8%, vs. AUC = 0.783 and accuracy = 74.6% using IVUS data. For the LSSVM method, the best combination predictor using IO data had AUC = 0.838 and accuracy = 75.7%, vs. AUC = 0.780 and accuracy = 69.6% using IVUS data. This preliminary study demonstrated improved plaque cap progression prediction accuracy using accurate cap thickness data from IO slices and the differences in cap thickness, stress/strain values, and prediction results between IVUS and IO data. Large-scale studies are needed to verify our findings.


2009 ◽  
Vol 4 (5) ◽  
pp. 626-632 ◽  
Author(s):  
Adrian Low ◽  
Yoshiaki Kawase ◽  
Yiong-Huak Chan ◽  
Guillermo Tearney ◽  
Brett Bouma ◽  
...  

2020 ◽  
Vol 75 (11) ◽  
pp. 1277
Author(s):  
Makoto Araki ◽  
Tsunenari Soeda ◽  
Hyung Oh Kim ◽  
Vikas Thondapu ◽  
Michele Russo ◽  
...  

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Rui Lv ◽  
Akiko Maehara ◽  
Mitsuaki Matsumura ◽  
Liang Wang ◽  
Qingyu Wang ◽  
...  

Abstract Background Detecting coronary vulnerable plaques in vivo and assessing their vulnerability have been great challenges for clinicians and the research community. Intravascular ultrasound (IVUS) is commonly used in clinical practice for diagnosis and treatment decisions. However, due to IVUS limited resolution (about 150–200 µm), it is not sufficient to detect vulnerable plaques with a threshold cap thickness of 65 µm. Optical Coherence Tomography (OCT) has a resolution of 15–20 µm and can measure fibrous cap thickness more accurately. The aim of this study was to use OCT as the benchmark to obtain patient-specific coronary plaque cap thickness and evaluate the differences between OCT and IVUS fibrous cap quantifications. A cap index with integer values 0–4 was also introduced as a quantitative measure of plaque vulnerability to study plaque vulnerability. Methods Data from 10 patients (mean age: 70.4; m: 6; f: 4) with coronary heart disease who underwent IVUS, OCT, and angiography were collected at Cardiovascular Research Foundation (CRF) using approved protocol with informed consent obtained. 348 slices with lipid core and fibrous caps were selected for study. Convolutional Neural Network (CNN)-based and expert-based data segmentation were performed using established methods previously published. Cap thickness data were extracted to quantify differences between IVUS and OCT measurements. Results For the 348 slices analyzed, the mean value difference between OCT and IVUS cap thickness measurements was 1.83% (p = 0.031). However, mean value of point-to-point differences was 35.76%. Comparing minimum cap thickness for each plaque, the mean value of the 20 plaque IVUS-OCT differences was 44.46%, ranging from 2.36% to 91.15%. For cap index values assigned to the 348 slices, the disagreement between OCT and IVUS assignments was 25%. However, for the OCT cap index = 2 and 3 groups, the disagreement rates were 91% and 80%, respectively. Furthermore, the observation of cap index changes from baseline to follow-up indicated that IVUS results differed from OCT by 80%. Conclusions These preliminary results demonstrated that there were significant differences between IVUS and OCT plaque cap thickness measurements. Large-scale patient studies are needed to confirm our findings.


Sign in / Sign up

Export Citation Format

Share Document